Supplement to InfiniBand[™] Architecture Specification Volume 2 Release 1.2.1

Annex A6: 120 Gb/s 12x Small Form-factor Pluggable (CXP)

Interface Specification for Cables, Active Cables, & Transceivers

September 2009

Copyright © 2009 by the InfiniBandSM Trade Association All rights reserved. All trademarks and brands are the property of their respective owners.

CXP Specification

Revision	Date	Revisions	2
	0/18/2000	Released Version	3
1.0	9/10/2009		4
			5
			6
			7
LEGAL	DISCLAIN	<u>IER</u> This specification provided "AS IS" and without any warranty of any kind including without limitation	8
		any express or implied warranty of non-infringement,	9
		merchantability or fitness for a particular purpose.	10
		In no event shall IBTA or any member of IBTA be liable	11
for any direct, indirect, special, exemplary, punitive or consequential damages including without limit	12		
		tion, lost profits, even if advised of the possibility of	13
		such damages.	14
			15
			16
			17
			18
			19
			20
			21
			22
			23
			20
			24

InfiniBand TM Architecture - Annex A6
VOLUME 2 - PHYSICAL SPECIFICATIONS

TABLE OF CONTENTS

2

1

Chapte	er 1:	Overview	8	3
1.1	Design	Targets and Compatibility	8	4
1.2	Partici	pants	11	5
Chapte	er 2:	Electrical Specification	12	
2.1	Electric	cal Connector	12	6
2.2	Host b	oard Schematic	14	7
2.3	Low-S	peed Electrical Contact/Signal Definitions	14	I
	2.3.1	SDA. SCL		8
	2.3.2	Int L/Reset L	14	
	2.3.3	PRSNT L	16	9
2.4	Hiah-S	peed Electrical Contact/Signal Definitions	16	10
	2.4.1	Receive Signals: Rx[0-11][p/n]		10
	2.4.2	Transmit Signals: Tx[0-11][p/n]		11
2.5	Power	Requirements	17	
	2.5.1	Host Power Supply Filtering	17	12
	2.5.2	Host Power Supply Specifications	19	10
	2.5.3	Power Budget Classes	19	13
2.6	ESD	-	21	14
2.7	Hot Ins	ertion and Removal	21	
				15
Chapte	er 3:	High-Speed Electrical Signaling	22	10
3.1	Introdu	iction	22	10
3.2	Compl	ance Points	22	17
3.3	Linear	Passive / Linear Active Interface	23	
	3.3.1	Host Differential Driver Outputs	23	18
	3.3.2	Compliant Channel - Module Tx Inputs to Module Rx Outputs	23	10
	3.3.3	Host Differential Receiver Inputs	24	19
3.4	Limitin	g Active Interface	25	20
	3.4.1	Host Differential Driver Outputs	25	20
	3.4.2	CXP Module Tx Inputs	26	21
	3.4.3	CXP Module Rx Outputs	26	-
	3.4.4	Host Differential Receiver Inputs	27	22
				23

InfiniBand	TM Architecture - - Physical Spec	- Annex A6 DIFICATIONS	September 2009 FINAL RELEASE	
Chapte	r 4: Mecl	hanical and Board Definition	28	1
4.1	Introduction.		28	1
4.2	CXP Datums	and Component Alignment	29	2
4.3	CXP Module	Package Dimensions	31	
4.4	Connector O	rientation Key	36	3
4.5	Host PCB Fo	potprint	36	Δ
	4.5.1 Gro	unding Pad Structure		-
	4.5.2 Mat	ting of CXP Module & Host PCBs to CXP Electrical Connectors		5
4.6	Bezel for Sys	stems Using CXP Transceivers	40	6
Chapte	r 5: Env	ironmental and Thermal Specifications	41	0
5.1	Physical and	Mechanical Performance Requirements	41	7
5.2	Connector El	ectrical Performance Requirements	42	Q
5.3	Mechanical a	and Environmental Requirements	42	0
5.4	Thermal Perf	formance Ranges	43	9
5.5	CXP Housing	Assembly Thermal Interfaces		
5.6	EMI / Dust C	over for receptacle	49	10
Chapte	r 6 [.] Cabl	le Design	50	11
6 1	Device Modu	ule and Cable Options	50	10
0.1	611 Ser	parable optical Transceiver	50	12
	6.1.2 Acti	ive optical Cable		13
	6.1.3 Cor	oper Cable	51	
6.2	Latch Releas	; ;e	52	14
6.3	Cable Conne	ectivity	53	15
	6.3.1 Cat	ble Connectivity Mapping	53	15
	6.3.2 12x	to 3-4x Cables	54	16
6.4	Lane Usage	for 10-lane Interface	55	
6.5	Media-Specif	ic Requirements - Optical Transceivers and Optical Cables	56	17
	6.5.1 Col	or Coding and Labeling of CXP Optical Transceivers	56	18
	6.5.2 Opt	ical Connector Interfaces for 24-fiber transceivers	57	
	6.5.3 Inte	rface between 24-fiber connector and dual 12-fiber connectors	58	19
Chapte	r 7: Mana	agement Interface	59	20
7.1	Introduction.		59	04
7.2	Voltage and	Timing Specification	59	21
	7.2.1 Mar	nagement interface Voltage Specification	59	22
	7.2.2 Mar	nagement Interface Timing Specification	59	
7.3	Memory Inte	eraction Specifications	61	23
	7.3.1 Tim	ing for Memory Transactions	61	. .
	7.3.2 Tim	ing for Control and Status Functions	62	24

InfiniBa Volume	nd TM Archit 2 - Рнүзіс/	ecture - Annex A6 AL SPECIFICATIONS	September 2009 FINAL RELEASE	
	7.3.3	Timing for Squelch and Disable Functions	63	1
7.4	Device	Addressing and Operation	64	I
7.5	Read/V	Vrite Functionality	65	2
	7.5.1	CXP Memory Address Counter (Read AND Write Operations)	65	
	7.5.2	Read Operations (Current Address Read)		3
	7.5.3	Read Operations (Random Read)		4
	7.5.4	Read Operations (Sequential Read)	67	4
	7.5.5	Write Operations (Byte Write)		5
	7.5.6	Write Operations (Sequential Write)	69	Ŭ
	7.5.7	Write Operations (Acknowledge Polling)	70	6
7.6	CXP M	emory Map	71	
	7.6.1	Tx Lower Page	73	7
	7.6.2	Rx Lower Page	79	0
	7.6.3	Tx & Rx Common Upper Page 00h		0
	7.6.4	Tx Upper Page 01h	91	9
	7.6.5	Rx Upper Page 01h	92	-
				10

InfiniBand TM Architecture - Annex A6	
VOLUME 2 - PHYSICAL SPECIFICATIONS	

LIST OF FIGURES

September 2009 FINAL RELEASE

2

1

			3
Figure 1	CXP Conceptual Model	10	
Figure 2	Example Host Board Schematic	15	4
Figure 3	Recommended Host Board Power Supply Filtering	18	
Figure 4	Application Reference Model and Compliance Points	23	5
Figure 5	General view, CXP Cable Connector & Housing Assembly, w/o heat sink.	28	
Figure 6	Cable Connector and Receptacle Housing Datums	30	6
Figure 7	Shielded Free (Plug) Integrated Cable Connector	31	-
Figure 8	Shielded Free (Plug) Integrated Cable Connector, cont'd	32	7
Figure 9	Paddle Card Dimensions and Definition of Datums	33	-
Figure 10	Fixed (Receptacle) Connector	34	8
Figure 11	Dimensions for Fixed (Receptacle) Connector in Figure 10	35	· ·
Figure 12	Connector Key	36	9
Figure 13	Footprint - Shown in example application, Low Profile PCIe card	37	Ū
Figure 14	Ground Pad - Shown in example application, Low Profile PCIe card	39	10
Figure 15	Panel Cutout - Shown in example application, Low Profile PCIe card	40	10
Figure 16	Receptacle Housing with Integrated Riding Heat Sink	44	11
Figure 17	Heat Sink Interface on Connector Plug	45	
Figure 18	Heat Sink Thermal Interface Profile	46	12
Figure 19	Heat Sink Clip Attach Points on Receptacle Housing	47	12
Figure 20	Heat Sink Clip Structure	48	13
Figure 21	EMI cover / Dust Cover	49	10
Figure 22	Optical Transceiver with separable optical cable	50	14
Figure 23	Active Optical Cable	51	
Figure 24	Passive or Active Copper Cable	51	15
Figure 25	Exemplary Latch Release Mechanism for a Cable Connector	52	10
Figure 26	12x to 3-4x cables	54	16
Figure 27	Connector orientation for 24-fiber MPO/MTP connector	57	
Figure 28	Connector interface between 24-fiber and Two 12-fiber connectors	58	17
Figure 29	CXP 2-wire Serial Interface Timing Diagram	60	
Figure 30	CXP Device Addresses	65	18
Figure 31	Read Operation on Current Address	66	10
Figure 32	Random Read	67	19
Figure 33	Sequential Address Read Starting at Current Address	68	
Figure 34	Sequential Address Read Starting with Random CXP Read	68	20
Figure 35	Write Byte Operation	69	20
Figure 36	Sequential Write Operation	70	21
Figure 37	Memory Map 2-Wire Serial Addresses 1010 000x (Tx) & 1010 100x (Rx)	72	
			22

24

InfiniBandTM Architecture - Annex A6 Volume 2 - Physical Specifications

LIST OF TABLES

Table ()	Revision History	2	3
Table 1	Representative Transmission Media and Link Lengths	9	1
Table 2	Contact Assignments for 12x Pluggable-CXP Interface	13	4
Table 3	Power Supply Specification	19	5
Table 0	Power Budget Classification	19	0
Table 5	Compliant Channel S Parameter Requirements for 10 Gb/s (ODR)	24	6
Table 6	Driver Characteristics for 10 Gb/s for Limiting Active interfaces	25	C C
Table 7	CXP Limiting Active Module Tx Input Characteristics for 10 Gb/s	26	7
Table 8	CXP Limiting Active Module Rx Output Characteristics for 10 Gb/s	26	
Table 0	Receiver Characteristics for 10 Gb/s	27	8
Table 10	Definition of Datums	29	
Table 10	Module & Recentacle Connector Physical Requirements	25 	9
Table 12	Recommended Connector Physical Parameters	 11	
Table 12	Module & Recentacle Connector Electrical Performance Requirements	41 12	10
	Module and Receptacle Mechanical and Environmental Requirements	42 43	44
Table 15	Temperature Classification of Module Case	40 11	11
Table 15	Cable Connector Signal Assignment	44 53	12
Table 10	12x Board Connector Signal Assignment for 12x to 3-4x Cables	55	12
	Low Spood Control and Sonso Signal Specifications	50	13
	CXP 2-Wire Sorial Interface Timing Specifications	60	10
Table 19 Table 20	CXP Z-Wile Senai Intenace Timing Specifications	00	14
Table 20	I/O Timing for Control and Status Functions	01 62	
Table 21	I/O Timing for Squelch and Disable	02	15
Table 22	Ty Lower Page Memory Map	03	
Table 23	By Lower Page Memory Map (Optional)	73	16
Table 24	Tx & Dx Upper Dage 00b Memory Men		
	Tx & KX Upper Page 00h Memory Map	00	17
	Tx Upper Page 01h Memory Map	91	
Table 27	Kx Upper Page 01n Memory Map	92	18
			19

September 2009 FINAL RELEASE

CXP Specification

Overview

CHAPTER 1: OVERVIEW

2

13

1

This specification is a description of a 12x form-factor pluggable active device interface, with 12 transmit and 12 receive lanes, capable of supporting bit-rates in excess of 10 Gb/s per lane on a variety of electrical and optical transmission technologies.

This specification describes the form factor, electrical, mechanical, power, 6 and thermal interfaces between the devices or cables and the systems. The transmission technology (e.g., optical or electronic), transmission 7 medium (e.g., single-mode, multi-mode fiber, or copper), form factor (i.e., with cable attached to the pluggable device, or detachable with a separable connector), and physical layer definition for the communication between transceivers are not explicitly specified. However, the 9 specifications are intended to support several different technologies, including VCSEL/MMF parallel ribbon fiber links.

The current primary target for this technology is the InfiniBand architecture, at the 12x-QDR (Quad Data Rate) rate, as well as DDR and SDR rates. Other standards, such as Ethernet at the 100 Gb/s data rate and 12 Fibre Channel, may be supported as well.¹

1.1 DESIGN TARGETS AND COMPATIBILITY

This paragraph describes the design targets of the device. These targets are used as foundation for making decisions regarding the design of the interface and related devices. 15

- Transmission Bandwidth: The interface should be capable of comfortably supporting data communications at up to 10.5 Gb/s on each of 12 lanes, in order to support at least the following link options.
 - 12x QDR InfiniBand links, operating at (12+12)x10.0 Gb/s. 18
 - 100 Gb/s Ethernet, using a 10-lane PHY and a 64b/66b line code (e.g., 10.3125 using 64b/66b on 10 lanes), as defined by the
 19 IEEE.
- Electrical Interface Compatibility: Low-speed signals should be compatible with electrical interface specifications of <u>Section 2.3 on page</u>
 <u>14</u>, high-speed signals should be compatible with InfiniBand QDR

^{1.} Terminology note: The name CXP is intended to derive from several sources:22C = the Roman numeral for 100, indicating a form-factor targeted for >10023Gb/s per direction transmission. C is also the hexadecimal character for 12, indicating an interface with 12 lanes per direction.23XP = eXtended-capability Pluggable form-factor.24

InfiniBand TM Architecture - Annex A6 Volume 2 - Physical Specifications	Overview	September 2009 FINAL RELEASE
	electrical interface specifications defin	ed in the InfiniBand Specifica-

tion, Vol. 2, Chapter 6, as extended or modified in Chapter 3: High-
Speed Electrical Signaling of this annex.1Transmission Media Compatibility: This interface is expected to support modules or cables of at least the following types:3

- Copper Cable, un-equalized or passively equalized,
- Active Copper Cable with receive-side active equalization,
- Active Copper Cable with active equalization on both transmit 5 and receive sides,
- Active Optical Cable Assembly, and
- Separable Optical Transceiver and fiber optic cable.

This variety of transmission technologies allow cost-effective implementation across a wide range of link lengths using the same host receptacle and electrical interfaces. Example representative link lengths are shown in <u>Table 1 on page 9</u>. Note that these link lengths are not precise, and are not intended to be normative.

	Transmission Speed			1'
Transmission Medium	QDR 10.0 Gb/s	DDR 5.0 Gb/s	SDR 2.5 Gb/s	12 13
Copper Cable, un-equalized or passively equalized	~6-8 m	~9-12 m	12-15 m	14
Active Copper, Rx-side active	9-12 m	8-20 m	12-18 m	1
Active Copper, Both sides active	14-20 m	20-30 m	30-50 m	1
Active Optical Cable Assembly	~100 - 300 m	100-300 m	100-300 m	
Optical Transceiver	Up to ~10 km	Up to ~10 km	Up to ~10 km	

Table 1 Representative Transmission Media and Link Lengths

18

4

6

7

Note also that explicit transmission technology choices within an ac-
tive cable assembly (e.g., single-mode vs. multi-mode optical trans-
mission, glass vs. plastic optical fiber, or equalization and coding
techniques) are not addressed by this specification. This document
specifies the electrical, mechanical and thermal interfaces between
"module" (cable plug, or transceiver) and the host. Any transmission
technology which transports data transmission between two inter-
faces at the specified speed with good signal integrity at each end is
compliant.21

InfiniBand TM Architecture - Annex A6 Volume 2 - Physical Specifications	Overview	September 2009 FINAL RELEASE	_
1.2 PARTICIPANTS			1
	The following individual served as e	ditor of this annex during its creation:	2
	Alan Benner		3
			1
	The following individuals provided during its creation:	d active contributions to this annex	т Б
			5
	Ed Bright	Jay Neer	0
	Rupert Dance	Vit Novak	7
	Matt Davis	Tom Palkert	8
	Jay Diepenbrock	John Petrilla	9
	Chris Diminico	Michael Rost	10
	Robert Elliot	Zuowei Shen	11
	Jason Ellison	Harel Shvarzberg	12
	Frank Flens	Wei Tang	13
	Galen Fromm	Ola Torudbakken	14
	Keith Lang	Dean Wallace	15
	Ofer Levi	Michael Walmsley	16
	.lim McGrath	,	17
			18
			19
			20
			21
			22
			23
			24

CHAPTER 2: ELECTRICAL SPECIFICATION

2

6

1

This chapter contains contact definitions for the CXP transceiver. Compliance points for high-speed signal electrical measurements are defined in Figure 4 on page 23. Compliance points for all other electrical signals are at comparable points at the host edge card connector.

2.1 ELECTRICAL CONNECTOR

Table 2 on page 13shows the signal symbols and contact numbering for
the CXP module edge connectors. The diagram shows the module PCB7edge as a top and bottom view, for both circuit cards in the two-level con-
nector. There are 21 pads per level, for a total of 84, with 48 pads allocated8for (12+12) differential pairs, 28 for Signal Common or Ground (GND), 49for power connections, 4 for control/service. Mapping of these contacts9into physical locations in the device connector and the receptacle are
shown in Figure 8 on page 32, and Figure 10 on page 34, respectively.10

The operation of the low-speed control and status lines (PRSNT_L, 11 Int_L/Reset_L, SCL, & SDA) is described in <u>Section 2.3, "Low-Speed</u> <u>Electrical Contact/Signal Definitions," on page 14</u>, and operation of the high-speed lines for receiving and transmitting data is described in <u>Section 2.4, "High-Speed Electrical Contact/Signal Definitions," on</u> <u>page 16</u>.

1	4
•	•

- 15
- 16
- . . .
- 17
 - 18

 - 19
 - 20
 - 20
 - 21
 - 22

 - 23
 - 24

	Bot	tom side				Top Side		
I/O #	Nar	ne	Contact Length		Contact Length	Nai	me	I/O #
			Receive	er To	op Card			
C1	GND						GND	D1
C2		Rx1p				Rx0p		D2
C3		Rx1n				Rx0n		D3
C4	GND						GND	D4
C5		Rx3p				Rx2p		D5
C6		Rx3n				Rx2n		D6
C7	GND						GND	D7
C8		Rx5p		e		Rx4p		D8
C9		Rx5n		ĝ		Rx4n		D9
C10	GND			Ъ			GND	D10
C11	1	Rx7p		Car		Rx6p		D11
C12		Rx7n		Ĩ		Rx6n		D12
C13	GND						GND	D13
C14		Rx9p				Rx8p		D14
C15		Rx9n				Rx8n		D15
C16	GND						GND	D16
C17		Rx11p				Rx10p		D17
C18		Rx11n				Rx10n		D18
C19	GND						GND	D19
C20	F	PRSNT_L				Vcc3.	.3-Rx	D20
C21	Int_L	/Reset_L				Vcc1	2-Rx	D21
			Transmitte	er Bo	ottom Card			
A1	GND						GND	B1
A2		Tx1p				Tx0p		B2
A3		Tx1n				Tx0n		B3
A4	GND						GND	B4
A5		Тх3р				Tx2p		B5
A6		Tx3n				Tx2n		B6
A7	GND						GND	B7
A8		Tx5p		ge		Tx4p		B8
A9		Tx5n		Еd		Tx4n		B9
A10	GND			rd			GND	B10
A11		Tx7p		ပီ		Tx6p		B11
A12		Tx7n				Tx6n		B12
A13	GND						GND	B13
A14		Тх9р				Tx8p		B14
A15		Tx9n				Tx8n		B15
A16	GND						GND	B16
A17		Tx11p				Tx10p		B17
A18		Tx11n				Tx10n		B18
A19	GND						GND	B19
A20		SCL				Vcc3	.3-Tx	B20
A21		SDA				Vcc1	2-Tx	B21

Electrical Specification

September 2009 FINAL RELEASE

9

10

14

2.2 HOST BOARD SCHEMATIC

Figure 2 on page 15 shows an example of a host board schematic for CXP, with connections to host SerDes and control logic. For EMI protection the signals to the connector should be shut off when the CXP transceiver is removed. Standard board layout practices such as connections 3 to Vcc3.3 and Vcc12 and GND with vias, use of short and equal-length differential signal lines, use of microstrip-lines, and $50\Omega / 100\Omega$ terminations 4 are recommended. The chassis ground (case common) of the CXP module should be isolated from the module's circuit ground, GND. 5

Note that AC coupling capacitors on the high-speed signals are implemented inside the device or cable. This is opposite to the configuration described in *InfiniBand Architecture Specification, Volume 2*, <u>Compliance</u> 7 <u>Statement C6-8.2.1</u>, which specifies that DC blocking capacitors shall not be mounted inside the cable assembly for cables using MicroGiga-CN 8 connectors.

2.3 LOW-SPEED ELECTRICAL CONTACT/SIGNAL DEFINITIONS

2.3.1 SDA, SCL

SCL is the clock of the two-wire serial interface, and SDA is the data for the 2-wire serial interface. Operation of this interface is described in detail in <u>Chapter 7: Management Interface</u>, SCL and SDA must be pulled up in the host, through an pull-up resistor of value appropriate to the overall bus capacitance and the rise and fall time requirements listed in <u>Table 19 on</u> <u>page 60</u>.

2.3.2 INT_L/RESET_L

Int_L/Reset_L is a bidirectional signal. When driven from the host, it operates logically as a Reset signal. When driven from the module, it operates logically as an Interrupt signal. In both cases, the signal is asserted low, as indicated by the '_L' suffix. The Int_L/Reset_L signal requires open collector outputs in both the host and module, and must be pulled up on the host board, as described for SDA and SCL. Int_L and Reset_L indications are distinguished from each other by timing - a shorter assertion, driven by the module, indicates an interrupt, and a longer assertion of the signal, driven by the host, indicates a reset, as listed in Table 21 on page 62.

Int_L operation: When Int_L/Reset_L is pulled "Low" by the module for20longer than the minimum interrupt pulse width (t_{Int_L,PW-min}) and shorter21than the maximum interrupt pulse width (t_{Int_L,PW-max}) the signal signifies21an interrupt. An interrupt indicates a possible module operational fault or22of the interrupt using the 2-wire serial interface. Int_L must operate in23pulse mode (vs. static mode), in order to distinguish a short interrupt23signal from a longer reset signal, so the module must de-assert24

Figure 2 Example Host Board Schematic

InfiniBand TM Architecture - Annex A6	Electrical Specification	September 2009
VOLUME 2 - PHYSICAL SPECIFICATIONS		FINAL RELEASE

Reset_L operation: When the Int_L/Reset_L signal is pulled "Low" by the host for longer than the minimum reset pulse length (treset L PW-min), it initiates a complete module reset, returning all user module settings to their 2 default state. There is no maximum reset pulse length. Module Reset Assert Time (t init) starts on the rising edge after the low level on the 3 Reset L signal is released. During the execution of a reset (t init) the host shall disregard all status bits until the module indicates a completion 4 of the reset interrupt. The module indicates this by posting an Int_L signal with the Data_Not_Ready bit (Memory Map, Byte 2, bit 0) negated (set to 5 0). Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset from the host. 6

2.3.3 PRSNT_L

7 **PRSNT_L** is used to indicate when the module is plugged into the host receptacle. PRSNT_L is pulled up to Vcc3.3 on the host board through 8 ≥50 kOhm. It is pulled down to signal common through 5.2 kOhm in modules requiring 12V power, and tied directly down to signal common (no re-9 sistor) in modules requiring 3.3V power only. The PRSNT_L signal is asserted "Low" when inserted and deasserted "High" when the module is 10 physically absent from the host connector.

2.4 HIGH-SPEED ELECTRICAL CONTACT/SIGNAL DEFINITIONS

2.4.1 RECEIVE SIGNALS: Rx[0-11][P/N]

Rx[0-11][p/n] are CXP module receiver data outputs. They are AC-coupled differential lines that should be terminated with 100 Ohm differential at the Host ASIC or SerDes. The AC coupling is inside the CXP module 14 and not required on the Host board.

15 Output squelch for loss of input signal (Rx Squelch), is an optional function. Where implemented it shall function as follows. In the event of the optical or electrical signal on any physical lane becoming equal to or less than the level required to assert loss of signals (Rx LOS), then the receiver data output for that lane shall be squelched or disabled. In the squelched or disabled state, output impedance levels are maintained while the differential voltage swing shall be less than 50 mVpp, This voltage swing limit provides margin vs. the value specified for V_{RSD}, Signal Threshold for regeciver signal detection (85 mVpp in Rel. 1.2.1) in *InfiniBand Architecture Specification, Volume 2*, <u>Chapter 6: High Speed Electrical Signaling - 2.5</u>, 20 <u>5.0, & 10.0 Gb/s</u>

In normal operation, where Rx Squelch is implemented, the default case has Rx Squelch active. Rx Squelch can be deactivated using Rx Squelch 22 Disable through the 2-wire serial interface. Rx Squelch Disable is an optional function. 23

24

21

11

Electrical Specification

September 2009 FINAL RELEASE

2.4.2 TRANSMIT SIGNALS: TX[0)-11][P/N]	1
	Tx[0-11][p/n] are CXP module transmitter data inputs. They are AC-coupled differential lines with 100 Ohm differential terminations inside the CXP module. The AC coupling is inside the CXP module and not required	2
	on the Host board.	3
	Output squelch (Tx Squelch), for loss of input signal, (Tx LOS), is an op- tional function. Where implemented it shall function as follows. In the	4
	event of the differential, peak-to-peak electrical signal on any lane be- comes equal to or less than 50 mVpp, then the transmitter optical output	5
	an optical transceiver with separable optical connector, the optical modu-	6
	lation amplitude (OMA) when squelched shall be less than or equal to -26 dBm.	re CXP module transmitter data inputs. They are AC-cou- I lines with 100 Ohm differential terminations inside the he AC coupling is inside the CXP module and not required ard. 3 I (Tx Squelch), for loss of input signal, (Tx LOS), is an op- Where implemented it shall function as follows. In the fferential, peak-to-peak electrical signal on any lane be- or less than 50 mVpp, then the transmitter optical output all be squelched and the associated Tx LOS flag set. For sceiver with separable optical connector, the optical modu- e (OMA) when squelched shall be less than or equal to -26 n active. Tx Squelch is implemented, the default case n active. Tx Squelch can be deactivated using Tx Squelch h the 2-wire serial interface. Tx Squelch Disable is an op- 10 module is supplied through 4 contacts: Vcc3.3-Rx, Vcc12- and Vcc12-Tx. Power is applied concurrently to them. classes of modules exist with pre-defined maximum power mits, it is necessary to avoid exceeding the system power d cooling capacity when a module is inserted into a system ly accommodate lower power modules. It is recommended hrough the management interface, identify the power con- s of the module before allowing the module to go into high during hot plug insertion. 11 ns shall be met at the maximum power supply current. No cing of the power supply is required of the host system ule sequences the contacts in the order of ground, supply ring insertion. 21 22 d should use the power supply filtering network shown in pe 18, or an equivalent. Any voltage drop across a filter net-
	In normal operation, where Tx Squelch is implemented, the default case	8
	has Tx Squelch active. Tx Squelch can be deactivated using Tx Squelch Disable through the 2-wire serial interface. Tx Squelch Disable is an op-	9
	tional function.	10
2.5 POWER REQUIREMENTS		11
	Power for the module is supplied through 4 contacts: Vcc3.3-Rx, Vcc12-Rx, Vcc3.3-Tx and Vcc12-Tx. Power is applied concurrently to them.	12
	Since different classes of modules exist with pre-defined maximum power	13
	Since different classes of modules exist with pre-defined maximum power consumption limits, it is necessary to avoid exceeding the system power supply limits and cooling capacity when a module is inserted into a system designed to only accommodate lower power modules. It is recommended that the host, through the management interface, identify the power con- sumption class of the module before allowing the module to go into high	
	sumption class of the module before allowing the module to go into high power mode.	16
	A host board together with the CXP module(s) forms an integrated power	17
	system. The host supplies stable power to the module. The module limits electrical noise coupled back into the host system and limits inrush	18
	charge/current during hot plug insertion.	19
	All specifications shall be met at the maximum power supply current. No power sequencing of the power supply is required of the host system	20
	since the module sequences the contacts in the order of ground, supply and signals during insertion.	21
2.5.1 HOST POWER SUPPLY FI	LTERING	22
	The host board should use the power supply filtering network shown in Figure 3 on page 18, or an equivalent. Any voltage drop across a filter net-	23

work on the host is counted against the host DC set point accuracy spec- 24

InfiniBand TM Architecture - Annex A6	Electrical Specification	September 2009
VOLUME 2 - PHYSICAL SPECIFICATIONS		FINAL RELEASE

ification. Inductors with DC Resistance of less than 0.1 Ω should be used in order to maintain the required voltage at the Host Edge Card Connector. 1

21

22

23

24

2.5.2 HOST POWER SUPPLY SPECIFICATIONS

The specification for the power supply is shown in <u>Table 3 on page 19</u>.

Table 3 Power Supply Specification

Parameter	Min	Nominal	Max	Unit	Condition	
Vcc12_host		12			Measured at Vcc12-Tx and Vcc12-Rx	4
Vcc12 set point accuracy	-5		+5	%	Measured at Vcc12-Tx and Vcc12-Rx.	
Vcc12 Power supply noise including ripple			50	mVpp	1kHz to frequency of operation	Ę
Vcc3.3_host		3.3		V	Measured at Vcc3.3-Tx and Vcc3.3-Rx	
Vcc3.3 set point accuracy	-5		+5	%	Measured at Vcc3.3-Tx and Vcc3.3-Rx. Note ¹	(
Vcc3.3 Power supply noise including ripple			50	mVpp	1kHz to frequency of operation	
Module Maximum Current Inrush			1.25	А	On any contact.	
Module Current Ramp Rate			100	mA/uS		8

1. 5%-accurate power needed for VCSEL laser drivers

2.5.3 POWER BUDGET CLASSES

Power levels associated with classifications of modules are shown in <u>Table 4 on page 19</u>. In general, the higher power classification levels are associated with higher data rates and longer reach, for a particularly technology family.

Table 4 Power Budget Classification

Power Class	Max Power (W)	Power Class	Max Power (W)	14
0	0.25 or less	1	1.0 or less	. –
2	1.5 or less	3	2.5 or less	15
4	4.0 or less	5	6.0 or less	16
6	Higher than 6 Watts	7	Reserved	10

17

Power Class 0 supports a management-interface-only power level, for devices such as passive copper cables which require little or no signal power.

Power Classes 1 through 5 describe devices with between 0.25W and 6.0 Watts, with roughly a factor of 1.5 differentiating each power class.

Power Class 6 (higher than 6 Watts), is intended as a special high-power class, allowing higher-power devices and cables to operate with more than 6 Watts only after negotiation with a host that can support the cooling and power-delivery infrastructure to support such devices. As described in the Memory map, at Byte 44 in the Tx lower page and Byte 148 in Upper Page 00h, a device may not draw more than 6 Watts unless actively allowed by a host system. The actual amount of power used by such a high-24

1 2

9

10

InfiniBand TM Architecture - Annex A6 VoLUME 2 - PHYSICAL SPECIFICATIONS	Electrical Specification	September 2009 FINAL RELEASE

power device or cable is described in the Read-only Byte 148 of Upper 1 Page 00h.

The highest maximum power budget is determined by a current limit of 1.0 ² A for each power contact, and by the cooling capability provided by the system. Two contacts at each voltage level allow power supply of up to 6.6W of power at 3.3V, and 24W of power at 12V. Generally, cooling capability will limit the amount of power that a module may dissipate. The system designer is responsible for ensuring that the maximum temperature does not exceed the case temperature requirements. 5

InfiniBand TM Architecture - Annex A6	
VOLUME 2 - PHYSICAL SPECIFICATIONS	

Electrical Specification

2.6 ESD

The module high speed signal contacts shall withstand 1000 V electrostatic discharge using the Human Body Model module and all other contacts shall withstand 2000 V electrostatic discharge using the Human Body Model, per JEDEC Standard JESD22-A114B (March 2006), and 500 V using the charged device model, per JEDEC Standard JESD22-C101C (Dec. 2004), without damage or non-recoverable error including but not limited to latchup. A recoverable error is one that does not require reset or replacement of the device. 5

The module shall meet ESD requirements given in EN 61000-4-2, criterion B test specification such that when installed in a properly grounded housing and chassis the units are subjected to 15KV air discharges during 7 operation and 8KV direct contact discharges to the case.

2.7 HOT INSERTION AND REMOVAL

CXP modules shall not be damaged by removal or insertion. Removal ⁹ may occur while the link is operating without damage to either port or the link. Insertion or removal may occur with power on or power off. ¹⁰

CHAPTER 3: HIGH-SPEED ELECTRICAL SIGNALING

		2
3.1 INTRODUCTION		2 3 4 5 5 6 7 8 9 $\frac{2}{10}$ $\frac{2}{11}$ 12 13 14 15 16 17 18 19 20 21 22
Ţ	This chapter describes the signaling that allows for InfiniBand link opera-	4
tio Si	pecifications described here act as a supplement to <i>InfiniBand Architec</i> -	5
ti h	ure Specification, Volume 2. For any signaling specifications not listed here, the specifications listed in <i>InfiniBand Architecture Specification</i> ,	6
v G	<i>Jolume 2</i> , <u>Chapter 6: High Speed Electrical Signaling - 2.5, 5.0, & 10.0</u> <u>Gb/s</u> shall apply.	7
3.2 COMPLIANCE POINTS		8
S	Since the ASIC or Serdes pins are not accessible, signal levels and eye openings are described at the CXP connector contacts. All values are for	9
a C	in equivalent 100 Ω differential impedance load located at the test point. Correction or de-embedding must be performed to derive actual measure	10
d. is	lata, taking into account the configuration of the test setup. Nomenclature s shown in Figure 4 on page 23, consistent with <i>InfiniBand Architecture</i>	11
S	Specification, Volume 2, Figure 34.	12
		13
		14
		15
		16
		17
		18
		19
		20
		21
		22
		23

Figure 4 Application Reference Model and Compliance Points

3.3 LINEAR PASSIVE / LINEAR ACTIVE INTERFACE

For passive cables and for other types of modules that have linear transfer 16 functions, interface requirements shall use transfer functions based on Sparameters as described in InfiniBand Architecture Specification, Volume 17 2. Rel. 1.2.1. except as modified here. In cases where there is conflict between values in Rel. 1.2.1 and this document, this one shall take prece-18 dence.

3.3.1 HOST DIFFERENTIAL DRIVER OUTPUTS

20 Differential Driver Output Characteristics for 10 Gb/s are as defined in InfiniBand Architecture Specification, Volume 2, Table 19. 21

3.3.2 COMPLIANT CHANNEL - MODULE TX INPUTS TO MODULE RX OUTPUTS

A compliant channel for QDR (10.0 Gb/s) signaling is defined in terms of frequency-dependent S Parameters for the path between signal pins at 23 TP6 and TP8. Table 5. "Compliant Channel S Parameter Requirements for 10 Gb/s (QDR)," on page 24 describes the requirements for 10Gb/s 24

- 14
- 15

19

(QDR) bit rates. Requirements for operation at lower signaling rates are defined in *InfiniBand Architecture Specification, Volume 2*, <u>Chapter 6</u>: 1 <u>High Speed Electrical Signaling - 2.5, 5.0, & 10.0 Gb/s</u>.

2

Table 5 Compliant Channel S Parameter Requirements for 10Gb/s (QDR)1

SDD21 (min.)	SDD11 ²	Frequency
-8.0	-10	0.100 GHz
-8.0	-10	0.200 GHz
-8.0	-10	0.625 GHz
-8.0	-10	1.000 GHz
-8.0	-9.8	1.250 GHz
-8.0	-9.3	1.875 GHz
-8.0	-8.8	2.500 GHz
-9.5	-8.1	3.750 GHz
-11.0	-6.8	5.000 GHz
-15	-4.5	7.500 GHz
-22	-2.9	10.000 GHz
-22	-2.9 B	10.000 GHz ues are measured in d

2. Frequency dependent return loss derived from formula:11Frequency range 0.1 GHz - 1.0 GHz: SDD11(dB) = -1011Frequency range 1.0 GHz - 4.1 GHz: SDD11(dB) = -12+2*SQRT(f), f in GHz12Frequency range 4.1 GHz - 10.0 GHz: SDD11(dB) = -6.3+13*Log10(f/5.5), f in GHz12

3.3.3 HOST DIFFERENTIAL RECEIVER INPUTS

 14
 14

 Differential Receiver Input Characteristics for 10 Gb/s are as defined in InfiniBand Architecture Specification, Volume 2, <u>Table 22</u>.
 15

13

20

21

22

High-Speed Electrical Signaling

3.4 LIMITING ACTIVE INTERFACE

For active transceivers and cables with limiting amplifiers, such as active copper cables, optical transceivers, and active optical cables, the electrical interface requirements are modified from the requirements described in *InfiniBand Architecture Specification, Volume 2*, <u>Chapter 6</u>, 3 since these interfaces allow transmission with open eyes even to 10 Gb/s. For this interface, amplitude and jitter specifications on the eye diagram 4 are used (similar to at 2.5 Gb/s rate).

Active modules have interface specifications similar to host ports, since an active CXP module's Tx electrical input is similar to a host receiver 6 input, and an active CXP module's Rx electrical output is similar to a host driver. 7

3.4.1 HOST DIFFERENTIAL DRIVER OUTPUTS

ER OUTPUTS 8 Differential Driver output characteristics are as described in *InfiniBand Architecture Specification, Volume 2,* Table 19: Driver Characteristics for 9

10

. .

1

5

Symbol	Parameter	Maximum	Minimum	Units	Notes	
V _{diffc}	Differential output, (Note ¹) TP6, Normative	1.2	0.5	V	Differential unsigned waveform amplitude into 100 ohm differential load.	
					Replaces V _{diffc} row in <i>InfiniBand Architecture Specification, Volume 2</i> , <u>Table 19</u> , to tighten specifications for active limiting module interface	
J _{D1}	Deterministic Jitter (Note ²) TP6, Normative	0.15		UI	Replaces J _{D1} row in <i>InfiniBand Architecture Specification, Volume 2</i> , <u>Table 19</u> , to remove requirement "Without pre-emphasis", i.e., to allow pre-emphasis by driver.	
J _{T1}	Total Jitter (Note ²) TP6, Normative	0.30		UI	At +/- 7σ (10 ⁻¹²) Replaces J _{T1} row in <i>InfiniBand Architecture Specifi-</i> <i>cation, Volume 2</i> , <u>Table 19</u> , to clarify bit error rate measurement requirement	

Table 6 Driver Characteristics for 10 Gb/s, for Limiting Active interfaces

10Gb/s, with the exceptions described in Table 6 below.

1. Amplitude is measured for the first bit in a run.

2. Jitter is measured as defined in IBTA CIWG Test Specification

18

19

21

22

23

High-Speed Electrical Signaling

3.4.2 CXP MODULE TX INPUTS

A CXP Limiting Active module, shall be tolerant of input signals from the host port as described in *InfiniBand Architecture Specification, Volume 2*, 2 <u>Table 19: Driver Characteristics for 10Gb/s</u>, with the exceptions described in <u>Table 7</u> below. 3

Table 7 CXP Limiting Active Module Tx Input Characteristics for 10 Gb/s

4

1

Symbol	Parameter	Maximum	Minimum	Units	Notes	5
V _{diffc}	Differential input, (Note ¹) TP6, Normative	1.2	0.5	V	Differential unsigned waveform amplitude into 100 ohm differential load.	6
					Replaces V _{diffc} row in <i>InfiniBand Architecture Specification, Volume 2</i> , <u>Table 19</u> , to tighten specifications for active limiting module interface.	7
J _{D1}	Deterministic Jitter (Note ²) TP6, Normative	0.15		UI	Replaces J _{D1} row in <i>InfiniBand Architecture Specification, Volume 2</i> , <u>Table 19</u> , to remove requirement "Without pre-emphasis", i.e., to allow pre-emphasis	8
J _{T1}	Total Jitter (Note ²)	0.30		UI	At +/- 7σ (10 ⁻¹²)	9
	TP6, Normative				Replaces J _{T1} row in <i>InfiniBand Architecture Specification, Volume 2</i> , <u>Table 19</u> , to clarify bit error rate measurement requirement	10
SDD11	Return Loss	By for- mula: See Note ³		dB		11

1. Amplitude is measured for the first bit in a run.

2. Jitter is measured as defined in IBTA CIWG Test Specification.

3. Frequency dependent return loss derived from formula:

Frequency range 0.1 GHz - 1.0 GHz: SDD11(dB) = -10

Frequency range 1.0 GHz - 4.1 GHz: SDD11(dB) = -12+2*SQRT(f), f in GHz

Frequency range 4.1 GHz - 10.0 GHz: SDD11(dB) = -6.3+13*Log10(f/5.5), f in GHz

3.4.3 CXP MODULE RX OUTPUTS

The differential driver output characteristics of the Rx portion of a limiting active module are as described in *InfiniBand Architecture Specification*, 17 *Volume 2*, <u>Table 19</u>: <u>Driver Characteristics for 10Gb/s</u> for a host port differential driver, with the exceptions described in <u>Table 8</u> below. 18

Table 8 CXP Limiting Active Module Rx Output Characteristics for 10 Gb/s

Symbol	Parameter	Maximum	Minimum	Units	Notes	20
V _{diffc}	Differential output, (Note ¹)	1.2	0.2	V	Differential unsigned waveform amplitude into 100	
	TP8, Normative				ohm differential load.	21
J _{D1}	Deterministic Jitter (Note ²)	0.40		UI		
	TP7, Normative					22
J _{T1}	Total Jitter (Note ²)	0.72		UI	At +/- 7σ (10 ⁻¹²)	
	TP7, Normative					23

1. Amplitude is measured for the first bit in a run if a Backplane port, for all bits of a Cable Port.

2. Jitter is measured as defined in IBTA CIWG Test Specification.

16

19

24

13

14

High-Speed Electrical Signaling

1

3

11

12

13

14

15

16

17

18

19

20

21

22

23

24

3.4.4 HOST DIFFERENTIAL RECEIVER INPUTS

Differential Receiver input characteristics are as described in InfiniBand Architecture Specification, Volume 2, Table 22: Receiver Characteristics 2 for 10Gb/s, with the exceptions described in Table 9 below.

Table 9 Receiver Characteristics for 10 Gb/s

Symbol	Parameter	Maximum	Minimum	Units	Notes	4
J _{D1}	Deterministic Jitter (Note ¹) TP7, Normative	0.40		UI	Replaces t _{REye1} row in <i>InfiniBand Architecture Speci-</i> fication, Volume 2, Table 19, to clarify that limiting	5
					active interface will have an open eye at receiver at 10 Gb/s	6
J _{T1}	Total Jitter (Note ²) TP7, Normative	0.72		UI	Replaces t _{REye1} row in <i>InfiniBand Architecture Speci- fication, Volume 2</i> , <u>Table 19</u> , to clarify that limiting active interface will have an open eye at receiver at 10 Gb/s	7 8
SDD11	Return Loss	By for- mula: See Note ²		dB	Replaces S _{DD11} row in <i>InfiniBand Architecture Speci- fication, Volume 2</i> , <u>Table 19</u> , to tighten return loss specifications for active limiting module interface	9
I. Jitter is measured as defined in IBTA CIWG Test Specification.						

2. Frequency dependent return loss derived from formula:

Frequency range 0.1 GHz - 1.0 GHz: SDD11(dB) = -10

- Frequency range 1.0 GHz 4.1 GHz: SDD11(dB) = -12+2*SQRT(f), f in GHz
- Frequency range 4.1 GHz 10.0 GHz: SDD11(dB) = -6.3+13*Log10(f/5.5), f in GHz

2

3

8

CHAPTER 4: MECHANICAL AND BOARD DEFINITION

4.1 INTRODUCTION

The overall transceiver CXP module defined in this document is illustrated 4 in <u>Figure 5 on page 28</u>. The connector, receptacle, and receptacle housing dimensions described in this chapter, and the heat sink and heat 5 sink clip dimensions described in Chapter 5: Environmental and Thermal Specifications are constant for all applications, to ensure intermateability 6 and interchangeability between component parts. Dimensions not specifically called out may be modified, subject to intermateability and interchangeability constraints of the individual application.

The connector and housing assembly are designed to support copper cables with both active and passive data transmission, optical transceiver 9 modules, and active optical cable assemblies. Other transmission technologies may defined in a vendor-specific manner, as long as the connector and receptacle interfaces are preserved.

Figure 5 General view, CXP Cable Connector & Housing Assembly, w/o heat sink

Mechanical and Board Definition

4.2 CXP DATUMS AND COMPONENT ALIGNMENT

A listing of the datums for the various components is contained in <u>Table</u> <u>10 on page 29</u>. The alignments of some of the datums are noted. All di-2 mensions are in millimeters.

Table 10 Definition of Datums

3

1

Datum	Description	Where Shown	4
A	Width of Paddle Card	Figure 9	5
В	Top Surface of Paddle Card	Figure 9	Ŭ
С	Leading Edge of Short Signal Pads on Paddle Card	Figure 9	6
D	Width of Plug Snout	Figure 7	
E	Body of Plug	Figure 6	7
F	Front Edge of Receptacle Snout (does not include EMI fingers)	Figure 6, Figure 10	8
G	Centerline of First Row of Connector Compliant Contacts	Figure 6, Figure 10	
Н	Centerline of Receptacle Contacts	Figure 6, Figure 10	9
I	not used		
J	Centerline of outer contacts in Row A PCB holes	Figure 13	1
К	Line along Row A of PCB holes	Figure 13, Figure 14	
L	Surface of PCB	Figure 13	1
М	Width of Receptacle Snout Opening	Figure 10	1
N	Bottom Surface of Receptacle Housing	Figure 10	
Р	Bottom Surface of Plug Snout	Figure 7	1
Χ, Υ	Reference 0,0 on Host Board - (application-specific)	Figure 13	

14

15

16

- 17
- - 18

- 19
- 20
- 20
- 21
- 22

~~

- 23
- 24

Mechanical and Board Definition

The relationship of the transceiver/connector and receptacle housing relative to the host board and bezel is illustrated in <u>Figure 6 on page 30</u> and in <u>Figure 9 on page 33</u> by the location of the key datums of each of the components.

Mechanical and Board Definition

September 2009 FINAL RELEASE

1

6

4.3 CXP MODULE PACKAGE DIMENSIONS

A common mechanical outline is used for all CXP devices. The package drawing and dimensions for the CXP connector plug are defined in Figure 2 7 on page 31 and Figure 8 on page 32. Figure 9 on page 33 shows the dimensions of the paddle card and contacts inside the connector plug. 3

Package drawings and dimensions for the receptacle housing are shown 4 in Figure 10 on page 34 and Figure 11 on page 35. Note that some dimensions of the receptacle housing relate specifically to the heat sink clip 5 attachment, and are shown separately in Figure 19 on page 47.

	Description	Dim.	Tol.		Description	Dim.	Tol.	1
A01	Snout Width	21.20	0.13	A13	Base of snout to top of 1 st paddle card	2.99	0.20	1
A02	Snout Thickness	9.81	0.13	A14	Top of 1st to top of 2 nd card	4.50	0.10	
A03	Snout Bottom to Plug Top	14.60	Max	A15	Plug Body (Datum E) to short pad (Datum C)	26.67	0.20	17
A04	Plug Body Thickness	16.21	Max	A16	Tongue Width - Base	16.95	0.10	18
A05	Snout Length	28.45	0.13	A17	Tongue Width - Tip	16.10	0.20	
A06	Plug Body (Datum E) to Latch	1.74	0.13	A18	Length of Tongue - Straight Sec- tion	1.80	0.10	19
A07	Body Width	24.05	Max	A19	Length of Tongue	6.00	Min.	20
A08	Barb Lead-in Height	1.14	0.10	A20	Inside Width of Snout	20.00	0.05	
A09	Barb Lead-in Angle	45°	1º	A21	Inside Height of Snout	8.60	0.25	21
A10	Barb Length	2.05	0.10	A22	Tongue Thickness	0.60	Ref.	
A11	Plug Overall Body Length	62.00	Ref	A23	Orientation Key Lead-In Width	2.00	0.25	22
A12	Latch Width	11.90	0.10	A24	Orientation Key Lead-in Length	2.40	0.25	01

Figure 8 Shielded Free (Plug) Integrated Cable Connector, cont'd

	Description	Dim.	Tol.		Description	Dim.	Tol.
B01	Paddle Card Width	18.00	0.10	B10	Pad Length	1.55	Min.
B02	Paddle Card Thickness	1.00	0.10	B11	Card Edge to Second Pad	1.45	0.10
:B03	Overall Pad Centers	16.00	Basic	B12	Lead-in Chamfer x 45°	0.30	0.05
B04	Card Center to outer Pad, Side A and Side C	7.80	Basic	B13	Lead-in Chamfer x 45°	0.50	0.05
B05	Card Center to outer Pad, Side B and Side D	8.20	Basic	B14	Component Keep Out Area	5.40	Min.
B06	Pad Center to Center (Pitch)	0.80	Basic	B15	Lead-in Flat	0.36	Ref
B07	Pad Width	0.60	0.03	B16	Short Pad to Datum C	0.00	0.03
B08	Front Pad Length	0.90	0.05	B17	Pad to Lead-in Pad	0.08	0.015
B09	Front Pad Spacing	0.40	0.05				

Figure 9 Paddle Card Dimensions and Definition of Datums

	Description	Dim.	Tol.		Description	Dim.	Tol.
D01	Latch Hole from Face	0.97	0.05	D16	Shell Width at screw attach fea- tures	27.00	0.25
D02	Latch Hole from Datum M	5.40	0.10	D17	EMI Shell Base to Back	46.22	0.25
D03	Latch Hole Length	2.00	0.10	D18	Connector Contacts to Locating Post	9.30	0.05
D04	Latch Hole Width	1.50	0.10	D19	Not used		
D05	Latch Hole to Hole	10.80	0.05	D20	Peg Diameter	2.08	0.05
D06	Shell Width	25.05	0.25	D21	Card Slot Width	18.20	0.05
D07	Shell Height	11.88	0.13	D22	Card Slot Height	1.20	0.05
D08	Locating Post to Face	25.06	0.08	D23	Receptacle Body Width	19.89	0.08
D09	Locating Post to EMI Shell Base	18.06	0.13	D24	Receptacle Body Height	8.15	0.08
D10	Not used	-	~	D25	Peg Centerline to Peg Centerline	3.41	0.05
D11	Snout Width	23.10	0.08	D26	Contact Centerline to 1st Row of Compliant Pins	9.25	0.15
D12	Snout Opening Width	21.60	0.05	D27	Housing, Leg to Leg	17.35	0.05
D13	Snout Height	11.70	0.08	D28	PCB to Lower Card Slot Center- line	3.75	0.10
D14	Snout Opening Height	10.20	0.05	D29	Lower Card Slot to Upper Card Slot Centerline	4.50	0.10
D15	Peg Centerline to Peg Centerline	24.00	0.08	D30	Datum N to Bottom of Receptacle Housing	2.10	0.10

Figure 11 Dimensions for Fixed (Receptacle) Connector in Figure 10

Mechanical and Board Definition

Dim.

1.25

0.75

1.60

1.625

Tol.

0.13

0.13

0.13

0.13

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

4.4 CONNECTOR ORIENTATION KEY

Drawings and dimensions of an orientation key are shown in Figure 12 on page 36. This key assures that the plug is inserted into the receptacle with 2 the correct side up.

Description

Figure 12	Connector	Key
-----------	-----------	-----

4.5 HOST PCB FOOTPRINT

22 A typical host board mechanical footprint for attaching the CXP Connector and Receptacle system is shown in Figure 13 on page 37. The location on 23 the host board is application specific.
September 2009 FINAL RELEASE

DATUM K - DEFINED BY FIRST & LAST HOLE	1
DATUM J - CENTERLINE OF OUTER HOLES	2
DATUM L - PCB SURFACE	3
NO SOLDER MASK WITHIN 0.05 OF DEFINED PAD LOCATIONS	4
E15 DATUM AXIS J	5
	6
	7
	8
	9
	10
	11
	12
	12
EDGE OF BOARD	13
	14
MANUFACTURER FIDUCIAL	15

	J	

24

	Description	Dim.			Description	Dim.	
E01	Shield Screw Hole to Datum K	0.10	Basic	E11	Connector Datum to Card Edge	25.38	0.25
E02	Row A (Datum K) to Row B	4.00	Basic	E12	Shield Mounting Hole to Mount- ing Hole	24.00	Basic
E03	Shield Screw Hole to Datum K	4.70	Basic	E13	Shield Pin Center to Center	16.00	Basic
E04	Shield Screw Hole to Datum K	5.89	Basic	E14	Connector Datum to Manufac- turer Fiducial	Basic	N/A
E05	Row A (Datum K) to Row C	8.00	Basic	E15	Within Row pitch - Front to Back	1.20	Basic
E06	Shield Screw Hole to Datum K	9.30	Basic	E16	Within Row Horizontal Offset	0.80	Basic
E07	Row A (Datum K) to Row D	12.00	Basic	E17	Within Row pitch - Horizontal	1.60	Basic
E08	Shield Screw Hole to Datum K	13.40	Basic	E18	Contact Hole Finished Diameter	0.37	0.05
E09	Shield Screw Hole to Datum K	18.30	Basic	E19	Shield Mounting Hole Diameter	2.20	0.05
E10	Connector Datum to Manufac- turer Fiducial	Basic	N/A				

Figure 13 Footprint - Shown in example application, Low Profile PCIe card

Mechanical and Board Definition

4.5.1 GROUNDING PAD STRUCTURE

Structure of the ground pads connected to chassis ground are shown in Figure 14 on page 39.

4.5.2 MATING OF CXP MODULE & HOST PCBs TO CXP ELECTRICAL CONNECTORS

The cards and other components inside the CXP modules will require careful design to support 10Gb/s signaling on (12+12) differential pairs. ⁴ Similarly, high-speed traces in host PCBs must be carefully designed to minimize impedance discontinuities and reduce losses to acceptable ⁵ levels. These designs are outside the bounds of this specification.

- Ŭ

		1
		2
		3
		4
	OF THE CXP MODULE SHOULD BE	5
	CIRCUIT GROUND	6
। G12		7
		8
		9
	$\Box = G06 \oplus G10$	10
		11
		12
		13
	EDGE OF BOARD	14
	PCI BRACKET	15
	MANUFACTURER FIDUCIAL	16

Description Description Dim. Tol. Dim. Tol. 18 G01 Ground Pad Alley Width 1.30 0.10 G07 Connector Datum to Manufacturer Basic N/A Fiducial 19 G02 Ground Pad Alley Spacing 2.40 0.10 G08 Connector Datum to Front Pad Edge 24.88 0.10 20 G03 Ground Pad Inner Width 21.40 0.10 G09 Connector Datum to Card Edge 25.38 Ref G04 Ground Pad Width 26.49 0.10 G10 Connector Datum to Bezel 28.96 0.25 21 Pad Center to Manufacturer Ground Pad Edge to Inside Pad G05 Basic N/A G11 40.99 0.10 Fiducial Edge 22 G06 Ground Pad Width 3.21 0.10 G12 Ground Pad Length 43.84 0.10

23

Figure 14 Ground Pad - Shown in example application, Low Profile PCIe card

24

4.6 BEZEL FOR SYSTEMS USING CXP TRANSCEIVERS

Host enclosures that use CXP devices should provide appropriate clearances between the CXP transceivers to allow insertion and extraction 2 without the use of special tools and a bezel enclosure with sufficient mechanical strength. See Figure 15 on page 40 for the recommended bezel 3 design for a single CXP device, and for spacing of individual receptacles.

	1	4

	Description	Dim.	Tol.		Description	Dim.	Tol.	15
F01	Cutout Length	23.50	0.05	F04	Vertical Pitch	16.50	Min	16
F02	Cutout Height	12.10	0.05	F05	Horizontal Pitch (individual receptacles)	27.00	Min	
F03	Cutout Location from PCB Surface	6.29	0.05					17

Figure 15 Panel Cutout - Shown in example application, Low Profile PCIe card

19

18

The front surface of the receptacle housing may pass through the bezel. If EMI spring fingers are used, they shall make contact to the inside of the bezel cutout. If an EMI gasket is used, it shall make contact to the inside surface of the bezel or to the inside of the bezel cutout. To accept all housing designs, both bezel surfaces must be conductive and connected to chassis ground.

The CXP transceiver insertion slot should be clear of nearby moldings and 23 covers that might block convenient access to the latching mechanisms, the CXP transceiver, or the cables connected to the CXP transceiver. 24

CHAPTER 5: ENVIRONMENTAL AND THERMAL SPECIFICATIONS

1 2

3

8

5.1 PHYSICAL AND MECHANICAL PERFORMANCE REQUIREMENTS

The requirement for insertion forces, extraction forces and retention 4 forces are specified in <u>Table 11 on page 41</u>. The CXP receptacle housing and module design combinations must ensure that excessive force applied to a cable does not damage the CXP receptacle, housing, or host connector. If any part is damaged by excessive force, it should be the 6 cable or module, and not the receptacle or receptacle housing, which are part of the host system. 7

Table 11 Module & Receptacle Connector Physical Requirements

Symbol	Parameter	Min	Max	Unit	Comments	9
F _i	CXP module insertion force		150	N	EIA 364-13	
Fw	CXP module extraction		50	N	EIA 364-13	1
Fr	CXP module retention	90	170	N	Load pull, per EIA 364-38A	
					No damage to transceiver below 90N	1
F _{rcl}	Cage retention (latch strength)	180		N	No damage to latch below 180N	
F _{rhb}	Cage retention in host board	114		N	Force to be applied in a vertical direction, no damage to cage	
N _{hc}	Insertion / removal cycles, connec- tor/receptacle	100		Cycles	Number of cycles for the connector and recep- tacle with multiple transceivers	1
N _x	Insertion / removal cycles, CXP module	50		Cycles	Number of cycles for an individual module	1

15

16

17

It is also recommended that the connector interfaces meet the parameters defined in <u>Table 12 on page 41</u>

Table 12 Recommended Connector Physical Parameters

Symbol	Parameter	Min	Max	Unit	Comments	18
t _{pm}	Contact finish	0.76 Au over 1.27 Nickel		μm	As necessary to meet N _x requirements	19
Fn	Contact normal force	50		cN	per contact	
S _{hcc}	Contact Hertz stress	170		kpsi	per contact	20
D _{wc}	Contact wipe length	0.75		mm		

21

It is recommended that all components and attach processes used for those components be compliant with RoHS directive 2002/95/EC issued January 27, 2003. 23

3

5.2 CONNECTOR ELECTRICAL PERFORMANCE REQUIREMENTS

The CXP module and Receptacle shall comply to the electrical specifications described in <u>Table 13 on page 42</u>. 2

Table 13 Module & Receptacle Connector Electrical Performance Requirements

Symbol	Parameter	Min	Max	Unit	Comments	4
LLCR	Low level contact resistance - initial		80	mΩ	through testing per EIA 364-23, measured across interface between paddle card trace and receptacle	5
∆LLCR	Low level contact resistance - change		20	mΩ	through testing per EIA 364-23, as a result of any test group setup	6
I _{max}	Current rating, all contacts simulta- neously	0.5		A	per EIA-364-70 or IEC 512-5-1 Test 5a, at 30°C temperature rise above ambient	7
I _{max,s}	Current rating, single contact	1		A	per EIA-364-70 or IEC 512-5-1 Test 5a, at 30°C temperature rise above ambient	8
R _{lso}	Insulation Resistance	1000		MΩ	100 Vdc, between adjacent contacts	
V _{lso}	Dielectric Withstanding Voltage	300		Vdc	No defect or breakdown between adjacent con- tacts, 300 Vdc minimum for 1 minute	9
Z _{dco} (peak)	Differential Impedance - peak	90	110	Ω	EIA 364-108	1(
	(connector area)				Rise time: 50ps (20-80%)	
Z _{dco} (nom)	Differential Impedance (nominal)	95	105	Ω	Includes connector cable to connector interface and board termination pads and vias.	11
S _{cop}	Within-Pair Skew		5	ps	maximum (by design), measured at interface between paddle cards & receptacle. EIA 364-103	12
NEXT	Near End Crosstalk Isolation		-34	dB	EIA 364-90. 50 MHz to 10 GHz.	
C					Equivalent to 2% voltage crosstalk, power sum	14
L _{co}	Insertion Loss		1.0	dB	EIA 364-101, 50 MHz to 5 GHz	

5.3 MECHANICAL AND ENVIRONMENTAL REQUIREMENTS

The CXP module and receptacle shall comply to the mechanical and environmental specifications described in <u>Table 14 on page 43</u>. Connectors shall meet or exceed the environmental performance requirements of EIA-

18 19

- 20
- 21
 - 22
 - 23
 - _
 - 24

364.1000.01, including exposure to Mixed Flowing Gas consistent with the required product life 1

Parameter	Specification	Test Condition	3
Vibration	No damage No discontinuity longer than 1 μsec allowed.	EIA 364-28	4
	20 mOhms maximum change from initial (baseline) contact resistance		5
Mechanical Shock	No damage	EIA 364-27	6
	initial (baseline) contact resistance		7
Thermal Shock	No Damage	EIA 364-32C, Condition 1	
	20 mOhms maximum change from initial (baseline) contact resistance	-55°C to +85°C	8
Temperature Life	No Damage 20 mOhms maximum change from	EIA 364-17, Method A Test Condition 2, Test Time Condi- tion C	9
	initial (baseline) contact resistance	Subject mated specimens to 70°C for 500 hours	10
Humidity-Temperature	No Damage	EIA 364-31, Method III	10
Cycling	20 mOhms maximum change from initial (baseline) contact resistance	Subject unmated specimens to 10 cycles (10 days) between 25°C and 65° at 80-100% RH	11
Mixed Flowing Gas	No Damage	EIA 364-65, Class 2A	12
	20 mOhms maximum change from	Subject specimens to environments Class 2A,	12
	initial (baseline) contact resistance	7 days unmated and 7 days mated	13
Thermal Disturbance	No Damage	EIA 364-32	
	20 mOhms maximum change from initial (baseline) contact resistance	Cycle the connector between 15±3°C and 85±3°C as measured on part. Temperature ramps should be a mini-	14
		mum of 2°C per minute and dwell times should ensure that the contacts reach the temperture extremes (a mini- mum of 5 minutes).	15
		Humidity is not controlled.	16
		Perform 10 such cycles.	
			- 17

Table 14 Module and Receptacle Mechanical and Environmental Requirements

5.4 THERMAL PERFORMANCE RANGES

The CXP module shall operate within one or more of the case temperatures ranges defined in <u>Table 15 on page 44</u>. The temperature ranges are applicable between 60 m below sea level and 1800 m above sea level, (Ref. NEBS GR-63) utilizing the host system's designed airflow. CXP is designed to allow for up to 16 adjacent transceivers in a 19-inch rack-

21

18

- 23
- 24

mount design using individual or ganged receptacles, with the appropriate thermal design for cooling / airflow. (Ref. NEBS GR-63).

Table 15 Temperature Classification of Module Case 2

Class	Case Temperature Range During Operation		
Standard	0 through 70C		
Extended	-5 through 85C	4	
Industrial	-40 through 85C	Б	

5.5 CXP HOUSING ASSEMBLY THERMAL INTERFACES

Cooling requirements will be dependent on device technology. For devices or cables that require cooling inside the host, a receptacle housing with riding heat sink is shown in Figure 16 on page 44.

Figure 16 Receptacle Housing with Integrated Riding Heat Sink 17

18

6

19

- 21
- - 22

 - 23
 - 24

The thermal interface locations of the connector plug are shown in Figure 17 on page 45.

24

	Description	Dim.	Tol.		Description	Dim.	Tol.	19
K01	Heat Sink Pad Width	20.75	0.10	K07	Heat Sink Tower Width	19.75	0.10	20
K02	Heat Sink Width	23.50	0.10	K08	Heat Sink Clip Interface Zone	27.40	0.10	
K03	Heat Sink Pad Back Edge	15.57	0.10	K09	Heat Sink Clip Interface Zone	26.15	0.10	2'
K04	Heat Sink Pad Length	12.60	0.10	K10	Heat Sink Clip Interface Zone	14.90	0.10	
K05	Heat Sink Pad Height	0.94	0.10	K11	Heat Sink Clip Interface Zone	13.65	0.10	22
K06	Heat Sink Lead-in Angle	150.00	5.00					

Figure 18 Heat Sink Thermal Interface Profile

InfiniBandTM Architecture - Annex A6 VOLUME 2 - PHYSICAL SPECIFICATIONS

13

	Description	Dim.	Tol.		Description	Dim.	Tol.
M01	Flange to Heat Sink Attach Point	36.25	0.10	M06	Heat Sink Cover Opening Width	20.75	0.10
M02	Flange to Heat Sink Attach Point	7.84	0.10	M07	Flange to Heat Sink Cover Open- ing	18.65	0.10
M03	Heat Sink Attach Point Height	6.96	0.10	M08	Heat Sink Cover Opening Length	1.10	0.10
M04	Heat Sink Attach Point Width	2.00	0.10	M09	Flange to Heat Sink Attach Point	20.25	0.10
M05	Heat Sink Cover Opening Radius	0.50	0.10	M10	Height of Heat Sink Attach Point Feature	0.30	Min

Figure 19 Heat Sink Clip Attach Points on Receptacle Housing

1	7

	Description	Dim.	Tol.		Description	Dim.	Tol.
N01	Heat Sink Clip Flange to Attach Point	7.84	0.10	N08	Heat Sink Clip Finger Width	1.00	Ref
N02	Heat Sink Clip Flange to Attach Point	20.25	0.10	N09	Heat Sink Clip Cut Out Length	15.28	0.10
N03	Heat Sink Clip Flange to Attach Point	36.25	0.10	N10	Heat Sink Clip Cut Out Length	11.50	0.10
N04	Heat Sink Clip Length	43.25	0.10	N11	Heat Sink Clip Finger Height	0.91	Ref
N05	Heat Sink Clip Cut Out Width	23.60	0.10	N12	Heat Sink Clip Finger Location	33.97	Ref
N06	Heat Sink Clip Cut Out Width	19.90	0.10	N13	Heat Sink Clip Finger Location	8.09	Ref
N07	Heat Sink Clip Finger to Finger	19.90	0.10	N14	Heat Sink Clip Attach Point Width	6.25	Max.

Figure 20 Heat Sink Clip Structure

5.6 EMI / DUST COVER FOR RECEPTACLE

If an EMI cover or dust cover for the receptacle is used, it shall have the dimensions shown in Figure 21 on page 49. 2

1

14

15

	Description	Dim.	Tol.		Description	Dim.	Tol.	16
L01	Front Height	14.00	Max	L06	Body Height	9.81	0.10	17
L02	Front Width	24.00	Max	L07	Body Inner Height	6.35	0.10	
L03	Body Width	21.20	0.10	L08	Groove Width	4.35	0.10	18
L04	Front Thickness	2.00	Min.	L09	Groove Depth	0.73	Ref	
L05	Body Length	12.00	Max	L10	Body Inner Width	18.70	0.10	19

Figure 21 EMI cover / Dust Cover

20

21

- 23
- 24

CHAPTER 6:	CABLE DESIGN	- 1
		2
		3
	A variety of modules, devices, and cables are envisioned for this interface.	4
	This list is not normative or restrictive, but will clarify potential design op- tions.	5
6.1.1 SEPARABLE	OPTICAL TRANSCEIVER	6
	Figure 22 on page 50 shows an optical transceiver with separable optical optical, using a 24-fiber MPO-style connector. Details of the optical interface are described in Section 6.5 on page 56.	7
		8
		9
		10
		11
		12
		13
		14
		15
		16
	Figure 22 Optical Transceiver with separable optical cable	17
		18
		19
		20
		21
		22
		23
		24

InfiniBandTM Architecture - Annex A6 VOLUME 2 - PHYSICAL SPECIFICATIONS

Cable Design

6.1.2 ACTIVE OPTICAL CABLE

Cable Design

1

6.2 LATCH RELEASE

CXP modules and cables need a releasable latch for retention into the receptacle housing assembly. Since a latch release mechanism is not an interface that affects interoperability, the design of the latch release mechanism may be media-dependent and vendor-dependent, and is not 3 part of this specification.

Figure 25 on page 52 shows an example of a pull-tab type latch release mechanism for a cable connector. 5

	Description	Dim.	Tol.
C01	Pull Tab Length	50.00	Re
C02	Pull Tab Inner Diameter	9.91	Re
C03	Pull Tab Width	19.51	Re

Figure 25 Exemplary Latch Release Mechanism for a Cable Connector

22

21

12

13

14

15

16

17

18

19

20

Cable Design

6.3 CABLE CONNECTIVITY

6.3.1 CABLE CONNECTIVITY MAPPING

Any cable, regardless of transmission medium, requires a mapping describing which signal contacts in each end connect to which signal contacts in the other end. This connectivity diagram is shown in Table 16 on page 53 below.

Plug 1		Plu	ıg 2	P	lug 1	Pl	u g 2
Contact Number	Signal	Contact number	Signal	Contact Number	Signal	Contact number	Signa
A2	Tx1p	C2	Rx1p	C2	Rx1p	A2	Tx1p
A3	Tx1n	C3	Rx1n	C3	Rx1n	A3	Tx1r
A5	Тх3р	C5	Rx3p	C5	Rx3p	A5	Тх3р
A6	Tx3n	C6	Rx3n	C6	Rx3n	A6	Tx3r
A8	Tx5p	C8	Rx5p	C8	Rx5p	A8	Tx5p
A9	Tx5n	C9	Rx5n	C9	Rx5n	A9	Tx5r
A11	Tx7p	C11	Rx7p	C11	Rx7p	A11	Tx7p
A12	Tx7n	C12	Rx7n	C12	Rx7n	A12	Tx7r
A14	Tx9p	C14	Rx9p	C14	Rx9p	A14	Tx9p
A15	Tx9n	C15	Rx9n	C15	Rx9n	A15	Tx9r
A17	Tx11p	C17	Rx11p	C17	Rx11p	A17	Tx11
A18	Tx11n	C18	Rx11n	C18	Rx11n	A18	Tx11
B2	Tx0p	D2	Rx0p	D2	Rx0p	B2	Tx0p
B3	Tx0n	D3	Rx0n	D3	Rx0n	B3	Tx0r
B5	Tx2p	D5	Rx2p	D5	Rx2p	B5	Tx2p
B6	Tx2n	D6	Rx2n	D6	Rx-2	B6	Tx2r
B8	Tx4p	D8	Rx4p	D8	Rx4	B8	Tx4p
B9	Tx4n	D9	Rx4n	D9	Rx4n	B9	Tx4r
B11	Tx6p	D11	Rx6p	D11	Rx6p	B11	Tx6p
B12	Tx6n	D12	Rx6n	D12	Rx6n	B12	Tx6r
B14	Tx8p	D14	Rx8p	D14	Rx8p	B14	Tx8p
B15	Tx8n	D15	Rx8n	D15	Rx8n	B15	Tx8r
B17	Tx10p	D17	Rx10p	D17	Rx10p	B17	Tx10
B18	Tx10n	D18	Rx10n	D18	Rx10n	B18	Tx10

Table 16 Cable Connector Signal Assignment

InfiniBandTM Architecture - Annex A6 VOLUME 2 - PHYSICAL SPECIFICATIONS

Cable Design

September 2009 FINAL RELEASE

1

5

16

17

18

19

20

21

22

23

24

6.3.2 12x to 3-4x CABLES

The 12x to 3-4x cables are used for connecting to devices which may configurably operate with a single 12x port, or with three separate 4x ports, 2 using the same pins. The 12x to 3-4x cable provides an interface to a 12x interface board CXP connector, operating as either a single 12x port or as 3 three 4x ports. The opposite side of the cable provides three separate 4x cable connectors. Figure 26 on page 54 shows these configurations, for 4 copper and active optical cables.

Figure 26 12x to 3-4x cables

InfiniBand TM Architecture - Annex A6	Cable Design	September 2009
VOLUME 2 - PHYSICAL SPECIFICATIONS		FINAL RELEASE

6.3.2.1 PIN ASSIGNMENTS

The pin assignment listed in Table 17 on page 55 below shall be used for the board connector for InfiniBand 12x to 3-4x cables. 2

er	Contact (single 12x connector)	Signal (three 4x ports) ^{1,2}	Pin Number	Signal (single 12x port)	Signal (three 4x ports)
	l x0p	IBtx.1Op(0)	D2	Rx0p	IBtx.1lp(0)
	Tx0n	IBtx.1On(0)	D3	Rx0n	IBtx.1In(0)
	Tx1p	IBtx.1Op(1)	C2	Rx1p	IBtx.1lp(1)
	Tx1n	IBtx.1On(1)	C3	Rx1n	IBtx.1In(1)
	Tx2p	IBtx.1Op(2)	D5	Rx2p	IBtx.1lp(2)
	Tx2n	IBtx.1On(2)	D6	Rx-2	IBtx.1In(2)
	Тх3р	IBtx.1Op(3)	C5	Rx3p	IBtx.1lp(3)
	Tx3n	IBtx.1On(3)	C6	Rx3n	IBtx.1In(3)
	Tx4p	IBtx.2Op(0)	D8	Rx4	IBtx.2lp(0)
	Tx4n	IBtx.2On(0)	D9	Rx4n	IBtx.2In(0)
	Tx5p	IBtx.2Op(1)	C8	Rx5p	IBtx.2lp(1)
	Tx5n	IBtx.2On(1)	C9	Rx5n	IBtx.2In(1)
	Tx6p	IBtx.2Op(2)	D11	Rx6p	IBtx.2lp(2)
2	Tx6n	IBtx.2On(2)	D12	Rx6n	IBtx.2In(2)
	Tx7p	IBtx.2Op(3)	C11	Rx7p	IBtx.2lp(3)
2	Tx7n	IBtx.2On(3)	C12	Rx7n	IBtx.2In(3)
1	Tx8p	IBtx.3Op(0)	D14	Rx8p	IBtx.3lp(0)
5	Tx8n	IBtx.3On(0)	D15	Rx8n	IBtx.3In(0)
1	Tx9p	IBtx.3Op(1)	C14	Rx9p	IBtx.3lp(1)
5	Tx9n	IBtx.3On(1)	C15	Rx9n	IBtx.3In(1)
7	Tx10p	IBtx.3Op(2)	D17	Rx10p	IBtx.3lp(2)
3	Tx10n	IBtx.3On(2)	D18	Rx10n	IBtx.3In(2)
7	Tx11p	IBtx.3Op(3)	C17	Rx11p	IBtx.3lp(3)
3	Tx11n	IBtx.3On(3)	C18	Rx11n	IBtx.3In(3)
, A7, 1 eac 21, C	A10, A13, A16, A h plug are connec C20, and C21 are c	19, B1, B4, B7, B10, B13, B16 ted to local Signal Ground. Tl connected to local manageme	B19, C1, C4, C7, C10, C ey are not connected thro nt interface. They are not	13, C16, C19, D ² bugh cable. connected throu	1, D4, D7, D10, D13, D16, igh cable.
321, E	020, and D21 prov	ide local power. They are not	connected through cable.		

Table 17 12x Board Connector Signal Assignment for 12x to 3-4x Cables

17 2. Note that Pin Numbers / Contact Numbers are not specified, since they will be different for MicroGigaCN and QSFP connectors. Please refer to relevant specifications for contact numbers used for signals listed in this column.

6.4 LANE USAGE FOR 10-LANE INTERFACE

19

18

1

2

If 10 lanes are being used, as for a 100 Gb Ethernet interface, the middle lanes should be active, as they are less likely to see stress than the outer 20 lanes. That is, logical lanes 0 through 9 in a 10-lane interface should be implemented on physical pins corresponding to lanes 1 through 10 in 21 Table 2 on page 13, with the outer two lanes (0 and 11) in each direction 22 left unused.

23

InfiniBand TM Architecture - Annex A6 VoLume 2 - Physical Specifications	Cable Design	September 2009 FINAL RELEASE

6.5 MEDIA-SPECIFIC REQUIREME	NTS - OPTICAL TRANSCEIVERS AND OPTICAL CABLES	1
V	While most specified interface parameters are not dependent on which	'
li S	pecific transmission technology is used, some extra definition is required for pecific transmission technologies, which have other interfaces. This sec-	2
ti	ion includes interface specifications for features which are useful for	3
ti	hem.	4
6.5.1 COLOR CODING AND LABE	LING OF CXP OPTICAL TRANSCEIVERS	5
F	For optical transceivers with separable optical connectors, an exposed	6
ti	eature of the CXP transceiver (a feature of surface extending outside of he bezel) shall be color coded as follows:	0
		7
•	Beige for 850 nm	8
•	Blue for 1310 nm	
•	White for 1550 nm	9
E	Each CXP transceiver shall be clearly labeled. The complete labeling leed not be visible when the CXP transceiver is installed and the bottom	10
c c	of the device is the recommended location for the label. Labeling shall in- clude:	11
•	Appropriate manufacturing and part number identification	12
•	Appropriate regulatory compliance labeling	13
•	A manufacturing traceability code	
A te	Also the label shall include clear specification of the external port charac- eristics such as:	14 15
•	Optical wavelength	
•	Required fiber characteristics	16
•	Operating data rate	17
•	Interface standards supported	18
•	Link length supported	10
т	The labeling shall not interfere with the mechanical, thermal or EMI fea-	19
ti	ures.	20
		21
		22
		23
		24

Cable Design

1

6.5.2 OPTICAL CONNECTOR INTERFACES FOR 24-FIBER TRANSCEIVERS

One potentially useful transmission medium is parallel optical transmission over 24 fibers, with 12 fibers transporting data in each direction. In 2 the case of an optical transceiver, with demateable optical connector, as shown in the middle of Figure 1 on page 10, a 24-fiber MPO (also known 3 as MTP) connector can support bidirectional transmission across (12+12) fibers, and fits within the CXP form factor.

For this transmission technology, transceivers shall use a 24-fiber MPO 5 receptacle with the connector key oriented relative to Rx and Tx lane numbers as shown in Figure 1 on page 10. Optical cables with 24-fiber MPO 6 style connectors on each end shall be built "Key up/Key down", so that the helix half-twist incurred when the cable is plugged into transceivers will 7 correctly connect transmitter lanes to receiver lanes, lanes 0 to lanes 0, and lanes 11 to lanes 11. MPO-style "male" alignment pins shall be used 8 in the receptacle, and a "female" MPO-style connector shall be used on the cable connector. This is shown in Figure 27 on page 57 below.

6.5.3 INTERFACE BETWEEN 24-FIBER CONNECTOR AND DUAL 12-FIBER CONNECTORS

24-fiber MPO Receptacle

Interface between the 24-fiber MPO-style receptacle and a pair of 12-fiber MPO receptacles or male MPO-style connectors is shown <u>Figure 28 on 2</u> page 58 below.

This will be used for interfacing with prior 12x InfiniBand ports, or with structured cabling that uses 12-fiber MPO-style connectors and cables. 4

Figure 28 Connector interface between 24-fiber and Two 12-fiber connectors

21 22

17

18

19

20

- 23
- 24

CHAPTER 7: MANAGEMENT INTERFACE

2

3

9

14

1

7.1 INTRODUCTION

A management interface, as already commonly used in other form factors 4 like GBIC, SFP, XFP and QSFP is specified in order to enable flexible use of the transceiver by the user. The specification has been modeled on the 5 definition of the QSFP (Quad Small Form-factor Pluggable) multi-lane receiver, with extensions as needed to support 12-lane operation, at up to 6 (120+120) Gb/s. Some timing requirements are critical, especially for a multi-lane device, so the interface speed has been increased relative to 7 single-lane devices such as GBIC, SFP, and XFP. 8

7.2 VOLTAGE AND TIMING SPECIFICATION

7.2.1 MANAGEMENT INTERFACE VOLTAGE SPECIFICATION

Management signaling logic levels are based on Low Voltage CMOS op- 10 erating at 3.3V Vcc. Host shall use a pull-up to Vcc3.3 for the 2-wire interface SCL (clock), SDA (address & data), and Int_L/Reset_L signals. 11

The electrical specifications are given in <u>Table 18 on page 59</u>. This specification ensures compatibility between host bus masters and the 2-wire interface 13

Parameter	Symbol	Min	Max	Units	Condition
Module Input Voltage Low	Vil	-0.3	0.4	V	Pull-up to 3.3V.
Module Input Voltage High	Vih	2.3	3.6	V	Min Vih = 0.7*3.3V.
Module Output Voltage Low	Vol	-0.3	0.3	V	Condition IOL=3.0 mA. Pull-up to 3.3V.
Module Output Voltage High	Voh	2.8	3.6	V	Min Voh = 3.3V - 0.5V.
Module Output Current High	loh	-10	10	μA	-0.3V < Voutput < 3.6V
Capacitance of module on SCL & SDA contacts	C _{i,SCLSDA}		14	pF	Allocate 10 pF for IC, 4 pF for module PCB
Capacitance of module on Int_L/Reset_L I/O contact	C _{i,INT_L}		36	pF	Allocate 28 pF for IC, 8 pF for module PCB
Total bus capacitive load, SCL, SDA,	Cb		100	pF	3.0 kOhms Pullup resistor, max
and Int_L/Reset_L I/O pin			200	pF	1.6 kOhms Pullup resistor, max

Table 18 Low Speed Control and Sense Signal Specifications

22

7.2.2 MANAGEMENT INTERFACE TIMING SPECIFICATION

In order to support a multi-lane device a 400 kHz clock rate for the serial ²³ interface is expected. The timing requirements are shown in <u>Figure 29 on</u>

24

InfiniBandSM Trade Association

page 60 and specified in <u>Table 19 on page 60</u>. All values are referred to VIH(min) and VIL(max) levels shown in <u>Table 18 on page 59</u>.

Figure 29 CXP 2-wire Serial Interface Timing Diagram

14

15

23

24

2

Table 19 CXP 2-Wire Serial Interface Timing Specifications

Parameter	Symbol	Min	Max	Unit	Condition	
Clock Frequency	f _{SCL}	0	400	kHz		
Clock Pulse Width Low	t _{LOW}	1.3		μs		
Clock Pulse Width High	t _{HIGH}	0.6		μs		
Time bus free before new transmission can start	t _{BUF}	20		μs	Note ¹	
START Set-up Time	t _{SU,STA}	0.6		μs		
START Hold Time	t _{HD,STA}	0.6		μs		
Data Set-up Time	t _{SU,DAT}	0.1		μs	Note ²	
Data Hold Time	t _{HD,DAT}	0		μs	Note ³	
SDA and SCL rise time	t _{R,400}		0.3	μs	Note ⁴	
SDA and SCL fall time	t _{F,400}		0.3	μs	Note ⁵	
STOP Set-up Time	t _{SU,STO}	0.6		μs		

1. Between STOP & START and between ACK & ReSTART.

2. Data In Set Up Time is measured from Vil(max)SDA or Vih(min)SDA to Vil(max)SCL.

3. Data In Hold Time is measured from Vil(max)SCL to Vil(max)SDA or Vih(min)SDA.

4. Rise Time is measured from Vol(max)SDA to Voh(min)SDA.

5. Fall Time is measured from Voh(min)SDA to Vol(max)SDA.

Management Interface

7.3 MEMORY INTERACTION SPECIFICATIO	NS				
CXP mer	nory may be a	accessed	in eithe	er sing	e-byte or multiple-byte
memory b a module	blocks. The larg shall handle is	gest multi 4 bytes.	ple-byte The mini	contigu mum s	lous write operation that ize write block is 1 byte
3.1 TIMING FOR MEMORY TRANSACTION	IS	-			
CXP men	orv transactio	n timinas	are dive	n in Tal	ble 20
		ir unnigs	are give	11111 <u>11</u>	<u>010 20</u> .
Table 20 CXP Memo	ory Transacti	on Timiı	ng Speo	cificat	ion
Parameter	Symbol	Min	Max	Unit	Condition
erial Interface Clock Holdoff - "Clock Stretching"	T_clock_hold		500	μs	Note ¹
omplete Single or Sequential Write	t _{WR}		40	ms	Note ²
ndurance (Write cycles)		50,000		cycles	3

2

7.3.2 TIMING FOR CONTROL AND STATUS FUNCTIONS

Timing for CXP control & status functions are described in Table 21.

Parameter	Symbol	Min	Max	Unit	Condition, and Notes
Initialization Time	t _{init}		2000	ms	Note ^{1 2} , ³
Reset Pulse Width - Min.	t _{reset_L,PW-min}	25		ms	Note ⁴
Monitor Data Ready Time	t _{data}		2000	ms	Note ⁵
Reset Assert Time	t _{RSTL,OFF}		2000	ms	Note ⁶
Int_L Assert Time	t _{Int_L,ON}		200	ms	Note ⁷
Interrupt Pulse Width - Min	t _{Int_L,PW-min}	5		μs	Note ⁸
Interrupt Pulse Width - Max	t _{Int_L,PW-max}		50	μs	Note ⁹
Int_L Deassert Time	t _{Int_L,OFF}		0.5	ms	Note ¹⁰
Rx LOS Assert Time	t _{LOS,ON}		100	ms	Note ¹¹
Tx Fault Assert Time	t _{Txfault,ON}		200	ms	Note ¹²
Flag Assert Time	t _{flag,ON}		200	ms	Note ¹³
Mask Assert Time	t _{mask,OFF}		100	ms	Note ¹⁴
Mask Deassert Time	t _{mask,ON}		100	ms	Note ¹⁵
Select Change Time	t _{ratesel}		100	ms	Note ¹⁶
Power_over-ride or Power-set Assert Time	t _{Pdown,ON}		100	ms	Note ¹⁷
Power_over-ride or Power-set Deassert Time	t _{Pdown,OFF}		300	ms	Note ¹⁸

1. Time from power on, hot plug or rising edge of Reset until the module is fully functional. This time does not apply to non-Power Level 0 modules in the Low Power State.

Power on is defined as the instant when supply voltages reach and remain at or above the minimum level specified in <u>Table 3</u>.
 Fully functional is defined as Int_L asserted due to Data Not Ready (Byte 2, bit 0) deasserted. The module should also meet optical and electrical specifications.

4. This is the minimum Reset_L pulse width required to reset a module. Assertion of Reset_L activates a complete module reset, i.e., module returns to factory default control settings. While Reset_L is Low, Tx and Rx outputs are disabled and the module does not response to the two-wire serial interface.

5. Time from power on to Data Not Ready (Byte 2, bit 0) deasserted and Int_L asserted.

6. Time from rising edge on the Reset_L contact until the module is fully functional. During the Reset Time module will not respond to a "low" on the Int L/Reset L signal.

7. Time from occurrence of condition triggering Int_L until Vout:Int_L = Vol.

8. Int_L operates in pulse mode. Static mode (Int_L stays low until reset by host) is not supported for Int_L.

9. Int_L pulse width must not exceed t _{Int L,PW-max} , to distinguish Int_L from a Reset for other devices on bus.	18
10. Time from clear on read operation of associated flag until Int_L Status (Lower page, byte 2, bit 1) is cleared. This includes	
deassert times for Rx LOS, Tx Fault and other flag bits. Measured from falling clock edge after stop bit of read transaction.	19
11. Time from Rx LOS state to Rx LOS bit set (value = 1b) and Int_L asserted.	
Time from Tx Fault state to Tx Fault bit set (value = 1b) and Int_L asserted.	20
Time from occurrence of condition triggering flag to associated flag bit set (value = 1b) and Int_L asserted.	

14. Time from mask bit set (value = 1b) until associated Int_L assertion is inhibited.

15. Time from mask bit cleared (value = 0b) until associated Int_L operation resumes.

16. Time from change of state of Application or Rate Select bit until transmitter or receiver bandwidth is in conformance with appropriate specification.

17. Time from P_Down bit set (value = 1b) until module power consumption enters Power Class 0.18. Time from P_Down bit cleared (value = 0b) until the module is fully functional.

24

23

21

13

14

16

2

7.3.3 TIMING FOR SQUELCH AND DISABLE FUNCTIONS

Squelch and disable times are described in Table 22.

Table 22 I/O Timing for Squelch and Disable

Parameter	Symbol	Min	Max	Unit	Condition and Notes
Rx Squelch Assert Time	t _{Rxsq,ON}		0.080	ms	Note ¹
Rx Squelch Deassert Time	t _{Rxsq,OFF}		0.080	ms	Note ²
Tx Squelch Assert Time	t _{Txsq,ON}		400	ms	Note ³
Tx Squelch Deassert Time	t _{Txsg,OFF}		400	ms	Note ⁴
Tx Disable Assert Time	t _{Txdis,ON}		100	ms	Note ⁵
Tx Disable Deassert Time	t _{Txdis.OFF}		400	ms	Note ⁶
Rx Output Disable Assert Time	t _{Rxdis.ON}		100	ms	Note ⁷
Rx Output Disable Deassert Time	t _{Rxdis.OFF}		100	ms	Note ⁸
Squelch Disable Assert Time	t _{Sadis.ON}		100	ms	Note ⁹
Squelch Disable Deassert Time	t _{Sqdis,OFF}		100	ms	Note ¹⁰
 Time from Tx Disable bit set (value 5. Time from Tx Disable bit cleared (value 0. Time from Tx Disable bit cleared (value 10. Time from Rx Output Disable bit set (value 8. Time from Rx Output Disable bit clear 9. This applies to Rx and Tx Squelch and 10. This applies t	e = 1b) until opti e = 0b) until optic value = 1b) until optic value = 1b) until R ed (value = 0b) ur d is the time from nd is the time fron	x output co cal output al output ri tx output fa ntil Rx outp bit set (val n bit cleare	ndition is r falls belo ses above Ils below 1 ut rises ab ue = 1b) ur d (value =	eached. S w 10% of 90% of non ove 90% of ntil squelcl 0b) until s	ee <u>Section 2.4.2</u> . f nominal. pminal. Measured from Stop bit ninal. of nominal. h functionality is disabled. quelch functionality is enabled.

Management Interface

7.4 DEVICE ADDRESSING AND OPERATION	1
Serial Clock (SCL): The host supplied SCL input to CXP transceivers is	I
used to positive-edge clock data into each CXP device and negative-edge clock data out of each device. The SCL line may be pulled low by a CXP	2
module during clock stretching.	3
Serial Data (SDA): The SDA signal is bidirectional for serial data transfer. This signal is open-drain or open-collector driven and may be wire-ORed	4
with multiple open-drain or open collector devices, limited by aggregate capacitance vs. clock speed.	5
Master/Slave: CXP transceivers operate only as slave devices. The host	6
must provide a bus master for SCL and initiate all read/write communica- tion.	7
Device Address: All CXP modules use the same base addresses 1010	8
000x and 1010 100x, where x indicates read (1) or write(0). Each CXP module supports an internal memory map, with one or more 128B lower	9
page and one or more 128B upper pages, depending on module capabil- ities. See <u>Section 7.6</u> for memory map structure within each module.	10
Single CXP device per SCI /SDA: Since all CXP transceivers or modules	11
use the same two base addresses, each CXP port requires its own SCL/SDA bus. Support of multiple ports in a host requires multiple	12
SCL/SDA buses, or multiplexing circuitry such as a multiplexer chip or a switch chip. See <u>Section 2.3</u> and <u>Table 18</u> for more information.	13
Clock and Data Transitions: The SDA signal is normally pulled high in the	14
host. Data on the SDA signal may change only during SCL low time pe- riods. Data changes during SCL high periods indicate a START or STOP	15
condition. All addresses and data words are serially transmitted to and	16
from the CXP in 8-bit words. Every byte on the SDA line must be 8-bits long. Data is transferred with the most significant bit (MSB) first.	17
START Condition: A high-to-low transition of SDA with SCL high is a START condition, which must precede any other command.	18
STOD Condition: A low to high transition of SDA with SCI, high is a STOD	19
condition.	20
Acknowledge: After sending each 8-bit word, the transmitter releases the SDA line for one bit time, during which the receiver is allowed to pull SDA	21
low (zero) to acknowledge (ACK) that it has received each word. Device address bytes and write data bytes initiated by the host shall be acknowl-	22
edged by CXP transceivers. Read data bytes transmitted by CXP trans- ceivers shall be acknowledged by the host for all but the final byte read,	23
for which the host shall respond with a STOP instead of an ACK.	24

InfiniBand TM Architecture - Annex A6 VOLUME 2 - PHYSICAL SPECIFICATIONS	Management Interface	September 2009 FINAL RELEASE				
	Memory (Management Interface) Reset: After ar power loss or system reset the CXP management Memory reset is intended only to reset the CXP to	n interruption in protocol, nt interface can be reset. ransceiver management	- 1 2			
	interface (to correct a hung bus). No other trans- plied.	ceiver functionality is im-	2			
	1) Clock up to 9 cycles.		Л			
	2) Look for SDA high in each cycle while SCL is	s high.	4			
	3) Create a START condition as SDA is high		5			
	Device Addressing: CXP devices require an 8-bit	device address word fol-	6			

lowing a start condition to enable a read or write operation. The device address word consists of a mandatory sequence for the first seven most 7 significant bits, as shown in Figure 30. This is common to all CXP devices.

Transmitter Functions (0xA0)	1	0	1	0	0	0	0	R(1) / W(0)
Receiver Functions (0xA8)	1	0	1	0	1	0	0	R(1) / W(0)
	Most Significant Bit Least Significant E						Significant Bit	
Standard Two-wire Serial Device Address	1	0	1	0	A2	A1	A0	R/W

Figure 30 CXP Device Addresses

The eighth bit of the device address is the read/write operating select bit. A read operation is initiated if this bit is set high and a write operation is initiated if this bit is set low. Upon compare of the device address the CXP transceiver shall output a zero (ACK) on the SDA line to acknowledge the address.

Nomenclature for all registers more than 1 bit long is MSB-LSB.

7.5 READ/WRITE FUNCTIONALITY

7.5.1 CXP MEMORY ADDRESS COUNTER (READ AND WRITE OPERATIONS)

CXP devices maintain an internal data word address counter containing 20 the last address accessed during the latest read or write operation, incremented by one. The address counter is incremented whenever a data 21 word is received or sent by the transceiver. This address stays valid between operations as long as CXP power is maintained. The address "roll 22 over" during read and writes operations is from the last byte of the 128byte memory page to the first byte of the same page. 23

8

9

13

14

18

InfiniBand TM Architecture - Annex A6
VOLUME 2 - PHYSICAL SPECIFICATIONS

5

6

7

8

9

10

11

12

13

14

7.5.2 READ OPERATIONS (CURRENT ADDRESS READ)

A current address read operation requires only the device address read word (10100001-Tx base address or 10101001-Rx base address) be 2 sent, see Figure 31 on page 66. Once acknowledged by the CXP, the current address data word is serially clocked out. The host does not respond 3 with an acknowledge, but does generate a STOP condition once the data word is read. 4

			(CX	P/	٩D	DF	२												
H O S T	S T A R T	M S B						L S B	R E A D										N A C K	S T P
		1	0	1	0	A 2	0	0	1	0	х	х	х	х	х	х	х	х	1	
C X P										A C K	М S B							L S B		
							-	-	-				Da	ta	Wo	ord	l	-		

Figure 31 Read Operation on Current Address

7.5.3 READ OPERATIONS (RANDOM READ)

A random read operation requires a "dummy" write operation to load in the target byte address as shown in Figure 32 on page 67. This is accomplished by the following sequence: The target 8-bit data word address is sent following the device address write word (1010 0000 or 1010 1000) 16 and acknowledged by the CXP module. The host then generates another START condition (aborting the dummy write without incrementing the 17 counter) and a current address read by sending a device read base address (1010 0001 for Tx or 1010 1001 for Rx). The CXP acknowledges 18 the device address and serially clocks out the requested data word. The

- 19
- 20
- 21
- 22
- ___
- 23
- 24

InfiniBand TM Architecture - Annex A6
VOLUME 2 - PHYSICAL SPECIFICATIONS

host does not respond with an acknowledge, but does generate a STOP condition once the data word is read.

3
4
5
6
7
8
9
10
11
12
13 14

JVIL 2 - I THOUGH OFEUFICATIONS	FINAL RELEASE
is terminated when the host responds with a NACK and of an acknowledge.	d a STOP instead
CXP ADDR	
SM LR LR NS TS LSE LLR ALL CLL ALL ALL ALL ALL ALL ALL ALL ALL	
A B	
1 0 1	
Data Word n Data Word n+1 Data Word n+2	
CXP ADDR MEMORY ADDR CXP ADDR	
CXP ADDR MEMORY ADDR CXP ADDR R S M L W M L S M A T S S R S S F A B B I B B B A R C C A R C C C	N S A T C O K P
CXP ADDR MEMORY ADDR CXP ADDR R A A A A A A A A A A A A A A A C A A A A A A A A A A C A A A A A C A A C A C A C A C A C A C A C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C C A C C C C C C C C C C C C C<	Image: Normal Solution Normal Solution Image: Normal Solution Normal Solution <td< td=""></td<>
CXP ADDR MEMORY ADDR CXP ADDR R ADDR R A A A A A A CC A B A A A C A B A A C A C A C A C A A C A C A C A C A C A C A C A C A C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C <t< td=""><td>x x x x x x x x x L S B L S B L L</td></t<>	x x x x x x x x x L S B L S B L L
CXP ADDR MEMORY ADDR CXP ADDR R A A A A A A A A A A A C A C A C A A C A A A A C A C A C A C A C A C A C A C A C A C A C A C A C<	Image: Normal state of the
CXP ADDR MEMORY ADDR CXP ADDR A S M I I I I S M I I A A T S S R S S T S I R I I A C A B B I B B B B B A B A A C C K I C K I I A C K I	Image: Normal Solution of the second system of the second syst
CXP ADDR MEMORY ADDR CXP ADDR A S S S S S A	Image: Normal Sector 1 Normal Sector 1 Image: Normal Sector 1 Image: Normal Sector 1

Management Interface

address write word (0101 efg0) and acknowledgement, see Figure 35 on page 69. Upon receipt of this address, the CXP shall again respond with 22 a zero (ACK) to acknowledge and then clock in the first 8-bit data word. Following the receipt of the 8-bit data word, the CXP shall output a zero 23 (ACK) and the host master must terminate the write sequence with a STOP condition for the write cycle to begin. If a START condition is sent 24

InfiniBandTM Architecture - Annex A6

September 2009

InfiniBand TM Architecture - Annex A6	Management Interface	September 2009
VOLUME 2 - PHYSICAL SPECIFICATIONS		FINAL RELEASE

in place of a STOP condition (i.e. a repeated START per the 2-wire interface specification) the write is aborted and the data received during that operation is discarded. Upon receipt of the proper STOP condition, the CXP enters an internally timed write cycle, t_{WR}, to internal memory. The CXP disables it's management interface input during this write cycle and shall not respond or acknowledge subsequent commands until the write is complete. Note that 2-wire interface "Combined Format" using repeated START conditions is not supported on CXP write commands.

F	
:)	

 -			С	XF	ΔΓ	חר	R			—	N	1F	M	OF	27	Δ	DF	١R		-			Da	ata	١٨	Voi	rd				
H S O T	S N	M S					L	V 6 F	V	-	MS			Γ	Γ	Τ	T	Ţ	L S		M S								L S		S T
S A T R	A E R	3					B	B T	-		В							I	В		B								В		O P
Т	Г 1	1 ()	1	0 A	0	0	E) ()	0	x	х	x	x	×	()	x :	x	x	0	x	х	x	x	:)	x :	x	x	x	0	
		+			2	2		+		+			-		+		+	╉	+	_											
C X P										A C K									i	A C K										А С К	
	+								1	Ì				<u> </u>				_	-						<u> </u>					IX.	

Figure 35 Write Byte Operation

7.5.6 WRITE OPERATIONS (SEQUENTIAL WRITE)

A CXP device shall support up to a 4 sequential byte write without repeatedly sending CXP address and memory address information as shown in Figure 36 on page 70. A "sequential" write is initiated the same way as a single byte write, but the host master does not send a stop condition after the first word is clocked in. Instead, after the CXP acknowledges receipt of the first data word, the host can transmit up to three more data words. The CXP shall send an acknowledge after each data word received. The host must terminate the sequential write sequence with a STOP condition or the write operation shall be aborted and data discarded. Note that 2-19

20

13

- ~ .
- 21
- 22
- ____
- 23
- 24

InfiniBand TM Architecture - Annex A6
VOLUME 2 - PHYSICAL SPECIFICATIONS

wire interface "combined format" using repeated START conditions is not supported on CXP write.

			С	X	P	A	DI	DI	R				Ν	ЛE	١N	1 /	١C	D	R				D	ata	a١	No	orc	11				D	ata	a١	No	oro	d 2	2			D	ata	a V	Vc	ord	3				D	at	a١	Nc	ord	4				
H O S T	S T A R T	M S B							L S B	N R I T E	/	N S B	5							L S B		M S B							L S B		N S B							L S B		N S B							L S B		N S B							L S B		S T P	
		1	0	1	C) /	4 (2	0	0	0	0	х	X	()	x :	x	х	х	х	х	0	х	х	х	х	х	х	х	х	0	х	х	х	х	х	Х	x	х	0	х	х	х	х	х	х	х	х	0	х	х	х	х	х	х	х	х	0		
C X P											A C K										A C K									A C K									A C K									A C K									A C K		

Figure 36 Sequential Write Operation

7.5.7 WRITE OPERATIONS (ACKNOWLEDGE POLLING)

Once the CXP internally timed write cycle has begun (and inputs are being 12 ignored on the bus) acknowledge polling can be used to determine when the write operation is complete. This involves sending a START condition 13 followed by the device address word. Only if the internal write cycle is complete shall the CXP respond with an acknowledge to subsequent 14 commands, indicating read or write operations can continue.

15

16

17

18

19

20

21

22

23

24

2

10

InfiniBandTM Architecture - Annex A6 VOLUME 2 - PHYSICAL SPECIFICATIONS

Management Interface

September 2009 FINAL RELEASE

7.6 CXP MEMORY MAP

This section defines the Memory Map for CXP transceiver used for serial ID, digital monitoring and certain control functions. The interface is mandatory for all CXP devices. The interface has been designed largely after the XFP MSA as defined in INF-8077i Rev.4.0. The memory map has 3 been modified to accommodate 12 lanes per direction and to limit the required memory space. Paging on upper pages is used to allow slower access to less time-critical information.

The memory map has also been configured to support a range of device types, from simple passive cables with only EEPROM chips with two-wire 6 serial interfaces for identification, to, for example, optical transceivers with tunable equalization and per-lane optical power monitoring. All devices 7 conforming to this interface are required to implement a basic memory map, including various fields such as fields to identify the device type and 8 manufacturer.

The structure of the memory map is shown in Figure 37 on page 72. It includes two ranges of serial addresses, at 0xA0 (for Tx and basic required 10 functions), and 0xA8 (for optional extensions, including Rx functions). Each address (0xA0 and 0xA8) contains one lower page and at least one 11 upper page (00h), with one optional other upper page (01h) per address range. Each page contains 128 bytes of address space. The lower page 12 or pages contain Read-Only information, and may contain Read-Write fields as well, for more sophisticated devices. The upper page (00h) is required. Other(s) are optional, to allow devices without pageable memory. 14

This structure permits timely access to fields in the lower page, which contain time-critical information, such interrupt flags, alarms, critical monitors (temperature, voltage,...) and per-lane control. Read-only device information such as serial ID information, vendor information, is available in Upper Page 00, which is identical for both 0xA0 and 0xA8 device addresses. Less time-critical Read-Only information on more complex devices, such as threshold settings or per-channel monitors, are available with the optional Upper Page Select function.

19

5

9

The structure also allows for address expansion by adding additional upper pages as needed. This expansion is vendor-specific, and is not de-20 scribed in this document.

- 22
- 23
- 24

	Tx L	ower Page (1010 000x) - Required
Byte	Туре	Functions
0-6	RO	Tx Status: 0xA8 presence, Flat/Paging memory presence, Interrupt, Data not Ready, Loss of Sig- nal, Fault, Summary of Alarms
7-18	RO	Latched Tx Alarms: Loss of Signal, Fault, Per- channel Alarms (Power or Current high/low), Device alarms (temp, Vcc3.3 or Vcc12)
24-31	RO	Module Monitors: Temp, Voltage
40-41	RO	Module Monitor: Elapsed Operating Time
42-43	RW	Module Control: Rate / Application Select
53	RW	Module Control: Tx Reset
54-69	RW	Tx Channel Control: Disables, Squelch, Polarity Flip, Margin, Equalization control
97-108	RW	Masks for Alarms: Channel (LOS, Fault), Chan- nel Internal (Power or Current high/low) and Mod ule (Temp, Voltage)
109-118	RW	Vendor-Specific Area - Read/Write
119-126	RW	Password
127	RW	Upper Page Select Byte (00h or 01h)

				1
		Tx Up	per Page 01h (Optional)	
1	Byte	Туре	Functions	2
/	128-167	RO	Module Alarm Threshold Settings	3
1	168-179	RO	Channel Alarm Threshold Settings	
	180-181	RO	Checksum	4
	182-229	RO	Per-Channel Monitors: Tx Bias current and light output	5
	230-255		Reserved - Vendor-Specific Tx Functions	6

4	Upper Pa	ige 00	h (Identical for Tx & Rx) Required	8
/	Bytes	Туре	Functions	Q
	128-129	RO	Identifiers	5
	130-144	RO	Device Description: Cable & Con- nector, Power supplies, Max Case	10
			Temp, Min/Max Signal Rate, Laser wavelength or copper attenuation, and supported functions	11
	147	RO	Description: Device Technology	12
	152-222	RO	Vendor Information: Name & OUI, PN & PN rev, Serial number, Data code, & Customer-specific infor-	13
			mation	14
	223	RO	Checksum on 128-222	
	224-255	RO	Vendor Specific Area - Read-only	15

	Rx	Lower Page (1010 100x) - Optional
Byte	Туре	Functions
0-6	RO	Rx Status: Flat/Paging memory, Interrupt, Data not Ready, Loss of Signal, Fault, Summary of Alarms
7-18	RO	Latched Rx Alarms: Loss of Signal, Fault, Per- channel Alarms (Power or Current high/low), Device alarms (temp, Vcc3.3 or Vcc12)
24-31	RO	Module Monitors: Temp, Voltage
40-41	RO	Module Monitor: Elapsed Operating Time
42-43	RW	Module Control: Rate / Application Select
53	RW	Module Control: Rx Reset
54-75	RW	Rx Channel Control: Disables, Squelch, Polarity Flip, Margin, Amplitude, Pre-emphasis control
97-108	RW	Masks for Alarms: Channel (LOS, Fault), Chan- nel Internal (Power high/low) and Module (Temp, Voltage)
109-118	RW	Vendor Specific Area - Read/Write
119-126	RW	Password
127	RW	Upper Page Select Byte (00h or 01h)

Rx Upper Page 01h (Optional)			18
Byte	Туре	Functions	10
128-167	RO	Module Alarm Threshold Settings	19
168-179	RO	Channel Alarm Threshold Settings	
180-181	RO	Checksum	20
182-253	RO	Per-Channel Monitors: Rx Input power	21
254-255		Reserved - Vendor-Specific Rx Functions	22

24

16

17

7

Figure 37 Memory Map 2-Wire Serial Addresses 1010 000x (Tx) & 1010 100x (Rx)
7.6.1 TX LOWER PAGE

Table 23 on page 73 describes the memory map for the Tx lower page.

Table 23 Tx Lower Page Memory Map

\sim
_

			5 , 1				
Bvte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applic	tional/ cable)
_,					Passive	Active copper	Active Optical
0 00h	All	Reserved - 1B	Coded 00h (unspecified)	RO			
1 01h	All	Reserved: Extended Status	00h	RO			
2	7-4	Reserved	0000b	RO			
02h	3	Rx 0xA8 Device Address Presence	0 = Rx Device Address fields (0xA8) are present. 1 = Rx Device Address fields (0xA8) are not present		R	R	R
	2	Flat/Paging Memory Presence	0 = Paging is present. 1 = Upper Page 00h only, no other Tx Upper pages		R	R	R
	1	Int_L Status	Coded 1 for asserted Int_L. Clears to 0 when all flags including LOS and Fault are cleared.		R	R	R
	0	Data_Not_Ready	Indicates transceiver has not yet achieved power up and monitor data is not ready. Bit remains high until data is ready to be read at which time the device sets the bit low.		R	R	R
3-5	All	Reserved - 3B	Reserved for Status info	RO			
6 06h	7	LOS Tx Status Summary	Coded 1 when a LOS Tx flag (bytes 7-8) is asserted for any channel, else 0. Clears when LOS flags are cleared.	RO	-	0	0
	6	Reserved	Coded 0b. Reserved for Rx LOS Status Summary in Rx Lower Page				
	5	Fault Tx Status Summary	Coded 1 when a Fault Tx flag (bytes 9-10) is asserted for any channel, else 0. Clears when Fault flags are cleared.		-	0	0
	4	Bias Tx Status Summary	Coded 1 when a Tx Bias Hi-Lo Alarm (bytes 11-13) is asserted, else 0. Clears when alarm is cleared.		-	-	0
	3	Power Tx Status Summary	Coded 1 when a Tx Optical Power Hi-Lo Alarm (bytes 14-16) is asserted, else 0. Clears when alarm is cleared.		-	-	0
	2	Reserved	Coded 0b. Reserved for Rx Optical Power Hi-Lo Alarm in Rx Lower Page				
	1	Module Tx Status Summary	Coded 1 when any Tx Temperature or Voltage alarm (bytes 17-18) or reserved Module Tx monitor alarm (reserved in bytes 19-23) is asserted, else 0. Clears		-	0	0
			when Tx alarm is cleared.				
	0	Reserved	Reserved for other Module Monitor alarm				

Bvte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applic	tional/ :able)
2910	Dit	Rano			Passive	Active copper	Active Optical
7	7-4	Reserved	Loss of Signal Tx Channel: Coded 1 when asserted,	RO	-	0	0
07h	3-0	L-LOS Tx11 - Tx08	Latched, Clears on Read.				
8	7-0	L-LOS Tx07 - Tx00	Byte 7, bit 3 encodes for channel 1x11				
			Byte 7, bit 2 encodes for channel 1x10				
			Byte 7, bit 1 encodes for channel 1X09				
			Byte 7, bit 0 encodes for channel TX08				
			respectively.				
			Following registers follow the same pattern				
9	7-4	Reserved	Fault Tx Channel: Coded 1 when asserted, Latched,	RO	-	0	0
09h	3-0	L-Fault Tx11 - Tx08	Clears on Read.				
10	7-0	L-Fault Tx07 - Tx00					
11	7-0	L-Bias Hi-Lo Alarm	Tx Optical Bias Hi-Lo Alarm Latched: 2 bits / channel	RO	-	-	0
0Bh		Tx11 - Tx08	Coded 10b when High Bias current alarm is asserted				
12	7-0	L-Bias Hi-Lo Alarm	Coded 01b when Low Bias current alarm is asserted				
		Tx07 - Tx04	Coded 00b for no alarm. Latched, Clears on Read.				
13	7-0	L-Bias Hi-Lo Alarm Tx03 - Tx00					
14 0Eh	7-0	L-Power Hi-Lo Alarm Tx11 - Tx08	Tx Optical Power Hi-Lo Alarm Latched, 2 bits per channel	RO	-	-	0
15	7-0	L-Power Hi-Lo Alarm Tx07 - Tx04	Coded 10b when High Optical output power alarm is asserted				
16	7-0	L-Power Hi-Lo Alarm	Coded 01b when Low Optical output power alarm is				
10h		Tx03 - Tx00	asserted				
			Coded 00b for no alarm. Latched, Clears on Read.				_
17 11h	7	L-Temp High Alarm - Tx	High Internal Temperature Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	RO	0	0	R
	6	L-Temp Low Alarm - Tx	Low Internal Temperature Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.				
	5-0	Reserved					
18 12h	7	L-Vcc3.3 High Alarm - Tx	High Internal Vcc3.3 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	RO	-	0	0
	6	L-Vcc3.3 Low Alarm - Tx	Low Internal Vcc3.3 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.				
	5-4	Reserved					
	3	L-Vcc12 High Alarm - Tx	High Internal Vcc12 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.		-	0	0
	2	L-Vcc12 Low Alarm - Tx	Low Internal Vcc12 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.				
	1-0	Reserved					
19-21	All	Reserved - 3B	Reserved - Module Alarms	RO			

Table 23 Tx Lower Page Memory Map

Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op t Applie	tional/ cable)
					Passive	Active copper	Active Optical
22 16h	All	1st Tx Temp Monitor MSB	1st Internal Temperature Monitor for Tx MSB: Integer part coded in signed 2's complement. Tolerance is \pm 3°C.	RO	0	0	R
23 17h	All	1st Tx Temp Monitor LSB	1st Internal Temperature Monitor for Tx LSB: Fractional part in units of 1°/256 coded in binary.				
24-25	All	2nd Tx Temp Monitor	2nd Internal Temperature Monitor for Tx. Same 2 Byte for- mat as 1st	RO	0	0	0
26-27 1A-1Bh	All	Tx Vcc3.3 Monitor MSB Tx Vcc3.3 Monitor LSB	Internal Vcc3.3 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB. Tolerance is ± 0.10V.	RO	0	0	0
28-29 1C-1Dh	All	Tx Vcc12 Monitor MSB Tx Vcc12 Monitor LSB	Internal Vcc12 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB. Tolerance is \pm 0.1V.	RO	0	0	0
30-37	All	Reserved - 8B	Reserved - Module Monitors	RO			
38-39 26-27h	All	Elapsed Operating Time	Elapsed (Power-on) Operating Time: Elapsed time in 2 hour units coded as 16 bit unsigned integer, Low byte is MSB, Tolerance is $\pm 10\%$	RO	0	0	0
40 28h	All	Tx Module application select	Format to be determined as other applications besides InfiniBand arise	RW	-	0	0
41	7-3	Reserved	Reserved - Rate Select	RW			
29h	2-0	Tx Rate Select	Tx Rate Select / optimization 000: no Info 001: SDR 010: DDR 011: DDR / SDR 100: QDR 101: QDR / SDR 110: QDR / DDR 111: QDR / DDR / SDR	RW	-	0	0
42	7-1	Reserved		RW	0	0	0
2Ah	0	High-Power Mode	0: Device or cable may not draw more than 6 Watts of power.1: Device or cable may draw more than 6.0 W, up to limit denoted in Upper Page 00, Byte 148(94h)				
43-50	All	Reserved - 8B	Reserved - Module Control	RW			
51	7-1	Reserved		RW			
33h	0	Reset	Reset: Writing 1 return all registers on Tx pages (non-volatile RW, if present in vendor-specific area) to factory default values. Reads 0 after operation.		R	R	R

Table 23 Tx Lower Page Memory Map

22

23

Bvte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional/ cable)
					Passive	Active copper	Active Optical
52	7-4	Reserved	Tx Channel Disable: Writing 1 disables the whole	RW	-	0	0
34h	3-0	Channel Disable Tx11 - Tx08	channel, Default is 0.				
53	7-0	Channel Disable Tx07 - Tx00					
54	7-4	Reserved	Tx Output Disable: Writing 1 disables just the output for	RW	-	0	0
36h	3-0	Output Disable Tx11 - Tx08	the channel. Default is 0 (Squelch enabled).				
55	7-0	Output Disable Tx07 - Tx00					
56	7-4	Reserved	Tx Squelch Disable: Writing 1 disables squelch for the	RW	-	0	0
38h	3-0	Squelch Disable Tx11-Tx08	channel. Default is 0 (Squelch enabled).				
57	7-0	Squelch Disable Tx07 - Tx00					
58	7-4	Reserved	Tx Channel input polarity flip: Writing 1 inverts the polarity of outputs relative to the inputs. Default is 0 (No polarity flip)	RW	-	0	0
3Ah	3-0	Polarity flip Tx11 - Tx08					
59	7-0	Polarity flip Tx07 - Tx00					
60	7-4	Reserved	Tx Channel Margin Activation: Writing 1 places Tx in	RW	-	0	0
3Ch	3-0	Margin Select Tx11 - Tx08	"Margin Mode" - reduces signal integrity (electrical) or				
61	7-0	Margin Select Tx07 - Tx00	OWA (optical) by equivalent of ~1 dB. Default is 0.				
62	7-4	Input Equalization Tx11	Tx Input Equalization Control:	RW	-	0	0
3Eh	3-0	Input Equalization Tx10	Four bit code blocks (bits 7-4 or 3-0) are assigned to				
63	7-4	Input Equalization Tx09	each channel.				
3Fh	3-0	Input Equalization Tx08	Codes TXXXD are reserved.				
64	7-4	Input Equalization Tx07	Writing 0000b calls for no equalization.				
40h	3-0	Input Equalization Tx06	Intermediate code values call for intermediate levels				
65	7-4	Input Equalization Tx05	of equalization.				
41h	3-0	Input Equalization Tx04					
66	7-4	Input Equalization Tx03	Exact equalization parameters (e.g., crossover fre-				
42h	3-0	Input Equalization Tx02	quency, equalization levels, slopes vs. frequency,				
67	7-4	Input Equalization Tx01	etc.) are vendor-specific, and shall be appropriate to				
43h	3-0	Input Equalization Tx00					

Table 23 Tx Lower Page Memory Map

19

20

21

22

23

InfiniBandTM Architecture - Annex A6 Volume 2 - Physical Specifications

4

Byte Bi	Bit	Name	Name Description T	Туре	Requi - (Not	red/Op Applic	tional/ cable)
,					Passive	Active copper	Active Optical
68-94	All	Reserved - 27B	Reserved - Per-Channel Control	RW			
95	7-4	Reserved	Mask Tx LOS Flag: Writing 1 prevents Int_L on Tx LOS.	RW	-	0	0
5Fh	3-0	Mask LOS Flag Tx11 - Tx08	Default = 0				
96	7-0	Mask LOS Flag Tx07 - Tx00					
97	7-4	Reserved	Mask Tx Fault Flag: Writing 1 prevents Int_L on Tx Fault.	RW	-	0	0
61h	3-0	Mask Tx Fault Flag Tx11 - Tx08	Default = 0				
98	7-0	Mask Tx Fault Flag Tx07 - Tx00					
99	7-0	Mask Bias Hi-Lo Alarm	Mask Tx Bias Current Hi-Lo Alarm:	RW	-	-	0
63h		Tx11 - Tx08	Writing 10b prevents Int_L on Tx High Bias Current				
100	7-0	Mask Bias Hi-Lo Alarm	Writing 01b prevents Int_L on Tx Low Bias Current				
64h		1x07 - 1x04	Writing 11b prevents Int_L on both High and Low Bias				
101 65h	7-0	Mask Bias Hi-Lo Alarm Tx03 - Tx00	Current Alarms. Default = 00b				
102	7-0	Mask Pwr Hi-Lo Alarm	Mask Tx Optical Power Hi-Lo Alarm:	RW	-	-	0
100	7-0	Mack Dwr Hi-Lo Alarm	Viriting 10b prevents Int_L on Tx High Optical Power				
67h	7-0	Tx07 - Tx04	Writing 01b prevents int_L on 1x Low Optical Power Writing 11b prevents Int_L on both High and Low				
104	7-0	Mask Pwr Hi-Lo Alarm	Optical Power alarms.				
68h		1x03 - 1x00	Default = 00b				

Table 23 Tx Lower Page Memory Map

18

19

20

22

23

InfiniBandTM Architecture - Annex A6 Volume 2 - Physical Specifications

Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional/ cable)
			•		Passive	Active copper	Active Optical
105 69h	7	Mask Temp High Alarm - Tx	Mask High Internal Temperature Alarm: Writing 1 prevents Int_L on High Tx Internal temperature. Default = 0	RW	0	0	0
	6	Mask-Temp Low Alarm - Tx	Mask Low Internal Temperature Alarm: Writing 1 pre- vents Int_L on Low Tx internal temperature. Default = 0				
	5-0	Reserved					
106 6Ah	7	Mask Vcc3.3-Tx High Alarm	Mask High Internal 3.3 Vcc Alarm: Writing 1 prevents Int_L on High Vcc3.3-Tx Voltage alarm. Default = 0	RW	0	0	0
	6	Mask Vcc3.3-Tx Low Alarm	Mask Low Internal 3.3 Vcc Alarm: Writing 1 prevents Int_L on Low Vcc3.3-Tx Voltage alarm. Default = 0		0	0	0
	5-4	Reserved					
	3	Mask Vcc12-Tx High Alarm	Mask High Internal Vcc12 Alarm: Writing 1 prevents Int_L on High Vcc12-Tx Voltage alarm. Default = 0.		0	0	0
	2	Mask Vcc12-Tx Low Alarm	Mask Low Internal Vcc12 Alarm: Writing 1 prevents Int_L on Low Vcc12-Tx Voltage alarm. Default = 0		0	0	0
	1-0	Reserved					
107-109		Reserved - 3B	Reserved - Masks for Module Alarms	RW			
110-118 6Eh-76h	All	Vendor Specific - 9B	Vendor Specific Read-Write Registers for Tx	RW			
119-122 77h-7Ah	All	Password Change Entry Area	Password Change Entry Area	RW	0	0	0
123-126 7Bh-7Eh		Password Entry Area	Password Entry Area	RW	0	0	0
127 7Fh	All	Page Select Byte	Selects Upper Page - Required if paging is used on upper page(s). Not required if paging is not used. Writing 00h selects Tx & Rx Upper Page 00h Writing 01h selects Tx Upper Page 01h, etc.	RW	See note at left.		

Table 23 Tx Lower Page Memory Map

- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24

7.6.2 Rx Lower Page

Table 24 on page 79describes the memory map for the Rx lower page.1This page is optional, and may not be implemented on simple modules or 22devices such as passive cables.

Table 24 Rx Lower Page Memory Map (Optional)

3

	-						
Byte I	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional cable)
					Passive	Active copper	Active Optical
0 00h	All	Reserved - 1B	Coded 00h (unspecified)	RO			
1 01h	All	Reserved: Extended Status	00h	RO			
2	7-4	Reserved	0000b	RO			
02h	3	Reserved	0 - used in Tx Lower Page to indicate presence of Rx				
	2	Flat/Paging Memory Presence	0 = Paging is present. 1 = Upper Page 00h only, no other Rx Upper pages		R	R	R
	1	Int_L Status	Coded 1 for asserted Int_L. Clears to 0 when all flags are cleared.		0	R	R
	0	Data_Not_Ready	Indicates transceiver has not yet achieved power up and monitor data is not ready. Bit remains high until data is ready to be read at which time the device sets the bit low.		0	R	R
3-5	All	Reserved - 3B	Reserved for Status info	RO			
6	7	Reserved - 1b	Coded 0b. Reserved for Tx status info	RO			
06h	6	LOS Rx Status Summary	Coded 1 when a LOS Rx flag (bytes 9-10) is asserted for any channel, else 0. Clears when Fault flags are cleared.		-	0	0
	5-3	Reserved	Coded 000b. Reserved for Tx status info				
	2	Power Rx Status Summary	Coded 1 when a Rx Optical Power Hi-Lo Alarm (bytes 19-21) is asserted, else 0. Clears when alarm is cleared.		-	-	0
	1	Module Rx Status Summary	Coded 1 when any Rx Temperature or Voltage alarm (bytes 17-18) or reserved Module Rx monitor alarm (reserved in bytes 19-23) is asserted, else 0. Clears when Rx alarm is cleared.		-	0	0
	0	Reserved	Reserved for other Module Monitor alarm				

20

21

_ _

22

InfiniBandTM Architecture - Annex A6 VoLume 2 - Physical Specifications

								_
Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional/ cable)	
2					Passive	Active copper	Active Optical	
7	7-4	Reserved	Loss of Signal Rx Channel: Coded 1 when asserted,	RO	-	0	0	1
07h	3-0	L-LOS Rx11 - Rx08	Latched, Clears on Read.		-			
8	7-0	L-LOS Rx07 - Rx00						
9	7-4	Reserved	Fault Rx Channel: Coded 1 when asserted, Latched,	RO	-	0	0	
09h	3-0	L-Fault Rx11 - Rx08	Clears on Read.					
10	7-0	L-Fault Rx07 - Rx00						
11-13	All	Reserved - 3B	Reserved - Module Alarms - used in Tx Lower Page for Optical Bias Current Hi-Lo alarms	RO				
14 0Eh	7-0	L-Power Hi-Lo Alarm Rx11 - Rx08	Rx Optical Power Hi-Lo Alarm Latched: Coded 10 when asserted for High Rx Optical power	RO	-	-	0	
15	7-0	L-Power Hi-Lo Alarm Rx07 - Rx04	alarm, Coded 01 when asserted for Low Rx optical power					
16	7-0	L-Power Hi-Lo Alarm	alarm.					
10h		Rx03 - Rx00	Latched, Clears on Read.					
17 11h	7	L-Temp High Alarm - Rx	High Internal Temperature Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	RO	-	-	0	
	6	L-Temp Low Alarm - Rx	Low Internal Temperature Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.		-	-	0	
	5-0	Reserved			-			l
18 12h	7	L-Vcc3.3 High Alarm - Rx	High Internal Vcc3.3 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	RO	0	0	0	
	6	L-Vcc3.3 Low Alarm - Rx	Low Internal Vcc3.3 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.					
	5-4	Reserved						I
	3	L-Vcc12 High Alarm - Rx	High Internal Vcc12 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	1	0	0	0	I
	2	L-Vcc12 Low Alarm - Rx	Low Internal Vcc12 Alarm Latched: Coded 1 when asserted, Latched, Clears on Read.	1				I
	1-0	Reserved		1				Í
19-21	All	Reserved - 3B	Reserved - Module Alarms	RO				I

Table 24 Rx Lower Page Memory Map (Optional)

20

- 21
- 22

- 23
- 24

4

Table 24 Rx Lower Page Memory Map (Optional)

Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op t Applie	tional/ cable)	2
					Passive	Active copper	Active Optical	3
22 16h	All	1st Rx Temp Monitor MSB	1st Internal Temperature Monitor for Rx MSB: Integer part coded in signed 2's complement. Tolerance is ± 3°C.	RO	0	0	0	4
23 17h	All	1st Rx Temp Monitor LSB	1st Internal Temperature Monitor for Rx LSB: Fractional part in units of 1°/256 coded in binary.					5
24-25	All	2nd Rx Temp Monitor	2nd Internal Temperature Monitor for Rx. Same 2 Byte for- mat as 1st	RO	0	0	0	6
26-27 1A-1Bh	All	Rx Vcc3.3 Monitor MSB Rx Vcc3.3 Monitor LSB	Internal Vcc3.3 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB. Tolerance is ± 0.10V.	RO	0	0	0	7
28-29 1C-1Dh	All	Rx Vcc12 Monitor MSB Rx Vcc12 Monitor LSB	Internal Vcc12 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB. Tolerance is \pm 0.1V.	RO	0	0	0	8 9
30-37	All	Reserved - 8B	Reserved - Module Monitors	RO				
38-39 26h-27h	All	Elapsed Operating Time	Elapsed (Power-on) Operating Time: Elapsed time in 2 hour units coded as 16 bit unsigned integer, Low byte is MSB, Tolerance is $\pm 10\%$	RO	0	0	0	1
40 28h	All	Rx module application select	Format to be determined as other applications besides InfiniBand arise	RW	-	0	0	1
41	7-3	Reserved	Reserved - Rate Select	RW				
29h	2-0	Rx Rate Select	Rx Rate Select / optimization 000: no Info 001: SDR 010: DDR 011: DDR / SDR 100: QDR 101: QDR / SDR 110: QDR / DDR 111: QDR / DDR / SDR	RW	-	0	0	1
42 2Ah	All	Reserved	Used in Tx Lower Page to manage devices with >6.0 Watt power utilization	RW				1
43-50	All	Reserved - 8B	Reserved - Module Control	RW				
51	7-1	Reserved		RW				1
33h	0	Reset - Rx	Reset: Writing 1 return all registers on Rx pages (except any vendor-specific non-volatile RW areas) to factory default values. Reads 0 after operation.		R	R	R	1

19

20

21

22

23

Table 24 Rx Lower Page Memory Map (Optional)

Bvte	Bit	Name	Description	Туре	Requi - (Not	red/Op t Applie	tional/ cable)
_,					Passive	Active copper	Active Optical
52	7-4	Reserved	Rx Channel Disable: Writing 1 disables the whole	RW	-	0	0
34h	3-0	Channel Disable Rx11 - Rx08	channel. Default is 0.				
53	7-0	Channel Disable Rx07 - Rx00					
54	7-4	Reserved	Rx Output Disable: Writing 1 disables only the output for	RW	-	0	0
36h	3-0	Output Disable Rx11 - Rx08	the channel. Default is 0 (Output enabled).				
55	7-0	Output Disable Rx07 - Rx00					
56	7-4	Reserved	Rx Squelch Disable: Writing 1 disables squelch for the	RW	-	0	0
38h	3-0	Squelch Disable Rx11 - Rx08	channel. Default is 0 (Squelch enabled).				
57	7-0	Squelch Disable Rx07 - Rx00					
58	7-4	Reserved	Rx Channel Polarity Flip: Writing 1 inverts the polar- ity of outputs relative to inputs. Default is 0 (No polar- ity flip)	RW	-	0	0
3Ah	3-0	Polarity flip Rx11 - Rx08					
59	7-0	Polarity flip Rx07 - Rx00					
60	7-4	Reserved	Rx Channel Margin Activation: Writing 1 places Rx in	RW	-	0	0
3Ch	3-0	Margin Select Rx11 - Rx08	"Margin Mode" - reduces receiver sensitivity by equiv-				
61	7-0	Margin Select Rx07 - Rx00	alent of ~1 dB. Default is 0.				
62	7-4	Output Amplitude Rx11	Rx Output Amplitude Control:	RW	-	0	0
3Eh	3-0	Output Amplitude Rx10	Four bit code blocks (bits 7-4 or 3-0) are assigned to				
63	7-4	Output Amplitude Rx09	each channel.				
3Fh	3-0	Output Amplitude Rx08	Codes 1xxxb are reserved.				
64	7-4	Output Amplitude Rx07	Writing 0000b calls for minimum signal amplitude.				
40h	3-0	Output Amplitude Rx06	Writing intermediate code values calls for intermedi-				
65	7-4	Output Amplitude Rx05	ate levels of signal amplitude.				
41h	3-0	Output Amplitude Rx04					
66	7-4	Output Amplitude Rx03					
42h	3-0	Output Amplitude Rx02					
67	7-4	Output Amplitude Rx01					
43h	3-0	Output Amplitude Rx00					

19

20

21

22

23

1 Required/Optional/ Туре - (Not Applicable) 2 **Byte** Bit Name Description Active Active Passive Optical copper 3 68 7-4 Output Pre-Emphasis Rx11 Rx Output Pre-Emphasis Control: RW 0 0 44h 4 3-0 Output Pre-Emphasis Rx10 Four bit code blocks (bits 7-4 or 3-0) are assigned to each channel. 7-4 Output Pre-Emphasis Rx09 69 Codes 1xxxb are reserved. 5 45h 3-0 Output Pre-Emphasis Rx08 Writing 0111b calls for full-scale pre-emphasis. 70 7-4 Output Pre-Emphasis Rx07 Writing 0000b calls for minimum pre-emphasis. 6 46h 3-0 Output Pre-Emphasis Rx06 Writing intermediate code values calls for intermedi-71 7-4 **Output Pre-Emphasis Rx05** ate levels of pre-emphasis. 7 47h 3-0 Output Pre-Emphasis Rx04 72 7-4 Output Pre-Emphasis Rx03 8 48h 3-0 Output Pre-Emphasis Rx02 73 7-4 Output Pre-Emphasis Rx01 9 49h Output Pre-Emphasis Rx00 3-0 Reserved - 21B 74-94 All Reserved - Per-Channel Control RW 10 RW 95 7-4 Reserved Mask Rx LOS Alarm: Writing 1 prevents Int_L on Loss of 0 0 Signal, Default = 0 5Fh 11 3-0 Mask LOS Rx11 - Rx08 7-0 Mask LOS Rx07 - Rx00 96 12 97-98 Reserved - 2B Reserved - Per Module Mask RW All 99-101 All Reserved - 3B Reserved - Per Channel Mask RW 13 0 102 7-0 Mask Pwr Hi-Lo Alarm Mask Rx Optical Power Hi-Lo Alarm RW --66h Rx11 - Rx08 Writing 10b prevents Int_L on High Rx Optical Power 14 Mask Pwr Hi-Lo Alarm 103 7-0 Writing 01b prevents Int_L on Low Rx optical Power 67h Rx07 - Rx04 Writing 11b prevents Int_L for both High and Low Rx 15 104 7-0 Mask Pwr Hi-Lo Alarm Optical Power alarms. Rx03 - Rx00 68h Default = 00b 16

Table 24 Rx Lower Page Memory Map (Optional)

17

18

19

20

21

4

Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional/ cable)	
2					Passive	Active copper	Active Optical	:
105 69h	7	Mask Temp High Alarm	Mask High Internal Temperature Alarm: Writing 1 prevents Int_L on High Module Temperature alarm. Default = 0	RW	0	0	0	4
	6	Mask-Temp Low Alarm	Mask Low Internal Temperature Alarm: Writing 1 pre- vents Int_L on Low Module Temperature alarm. Default = 0					ę
	5-0	Reserved						
106 6Ah	7	Mask Vcc3.3-Rx High Alarm	Mask High Internal 3.3 Vcc Alarm: Writing 1 prevents Int_L on High Vcc3.3-Rx alarm. Default = 0	RW	0	0	0	6
	6	Mask Vcc3.3-Rx Low Alarm	Mask Low Internal 3.3 Vcc Alarm: Writing 1 prevents Int_L on Low Vcc3.3-Rx alarm. Default = 0		0	0	0	
	5-4	Reserved						8
	3	Mask Vcc12-Rx High Alarm	Mask High Internal Vcc12 Alarm: Writing 1 prevents Int_L on High Vcc12-Rx alarm. Default = 0.		0	0	0	ę
	2	Mask Vcc12-Rx Low Alarm	Mask Low Internal Vcc12 Alarm: Writing 1 prevents Int_L on Low Vcc12-Rx alarm. Default = 0		0	0	0	
	1-0	Reserved						
107-109		Reserved - 3B	Reserved - Masks for Module Alarms	RW				
110-118 6Eh-76h	All	Vendor Specific - 9B	Vendor Specific Read-Write Registers for Rx	RW				
119-126 77h-7Eh	All	Reserved - 8B	Reserved - compatibility with Tx page Password field	RW				
127 7Fh	All	Page Select Byte	Selects Upper Page - Required if paging is used on upper page(s). Not required if paging is not used. Writing 00h selects Tx & Rx Upper Page 00h Writing 01h selects Rx Upper Page 01h, etc.	RW	See note at left.			

Table 24 Rx Lower Page Memory Map (Optional)

17

18

19

20

21

22

23

24

InfiniBandSM Trade Association

7.6.3 TX & RX COMMON UPPER PAGE 00H

Table 25 on page 85shows the memory map for the first upper page, page00h, for both Tx and Rx addresses.2

Table 25 Tx & Rx Upper Page 00h Memory Map

2
S

1

Byte	Bit	Name	Description	Type	Required/Optional/ - (Not Applicable)			4
2910				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Passive	Active copper	Active Optical	5
128 80h	All	Reserved - Type Identifier	Reserved for SFF-style Type Identifier code for CXP - probably either 0Eh or 0Fh, TBD	RO				6
129 81h	7-5	Power Class	000: 0.25W max - Class 0 001: 1.0W max - Class 1 010: 1.5W max - Class 2 011: 2.5W max - Class 3 100: 4.0W max - Class 4 101: 6.0W max - Class 5 110: >6.0W - Class 6 111: Reserved	RO	R	R	R	7 8
	4	Tx CDR Presence	Coded 1 for Tx CDR (clock & data recovery) pro- vided; else coded 0		R	R	R	9
	3	Rx CDR Presence	Coded 1 for Rx CDR provided; else coded 0		R	R	R	
	2-0	Reserved						10
130 82h	All	Connector / Cable	00h-0Ch: Not compatible w/CXP, Rsvdcompatibility0Dh-1Fh: Reserved20h-23h: Rsvdcompatibility24h-2Fh: Reserved30h: Passive Copper Cable Assembly31h: Active Copper Cable Assembly (ref. Byte 147)32h: Active Optical Cable Assembly33h: Optical Transceiver w/ optical connector34h-7Fh: Reserved80h-FFh: Vendor Specific	RO	-	R	R	11 12 13
131	7	1	3.3V - Vcc3.3 - Coded 1 if required for the module	RO	R	R	R	14
83h	6-4	000b - Reserved	2.5V, 1.8V, Vo supplies - not available in receptacle					4.5
	3	1	12V - Vcc12 - Coded 1 if required for the module		R	R	R	15
	2-0	000b - Reserved						16
132 84h	All	Max Temperature	Maximum Recommended Operating Case Tempera- ture for the module, in Degrees C	RO	R	R	R	17
133 85h	All	Min per-channel bit rate	Min signal rate = binary value x 100 Mb/s (e.g., 25 (00011001b) = 2500 Mb/s, & 100 (01100100b) = 10,000 Mb/s)	RO	-	R	R	17
134 86h	All	Max per-channel bit rate	Max signal rate = binary value x 100 Mb/s	RO	-	R	R	19

21

22

- 23
- 24

Table 25 Tx & Rx Upper Page 00h Memory Map

Byte	Bit	Name	Description	Туре	Required/Option		
_,			Decemption	- , , , , ,	Passive	Active copper	Active Optica
135-136 87h-88h	All	Optical: Laser Wavelength	Optical : Nominal Laser Wavelength Wavelength in nm = value / 20): e.g.,42h 04h = 16,900, 16,900/20 = 845 nm	RO	R	R	R
		Copper: Attenuation	Copper : Nominal attenuation of cable either to the other end (passive) or to equalizer (active)				
			Byte 135: Attenuation at 2.5 GHz in dB - 00h=no info Byte 136: Attenuation at 5 GHz in dB - 00h=no info				
137-138 89-8Ah	All	Optical: Max Wavelength Deviation	Optical : Wavelength tolerance (max deviation from nominal) Wavelength tolerance in $nm = \pm/-value / 200$):	RO	R	R	R
		Extended	Copper: Nominal attenuation- extended				
			Byte 137: Attenuation at 10 GHz in dB - 00h=no info Byte 138: Tolerance of nominal attenuation at Max per-channel bit rate (Byte 134)				
139	7	Support for Tx Fault	Coded 1 if Tx Fault Flag supported, else coded 0	RO	R	R	R
8Bh	6	Support for Rx Fault	Coded 1 if Rx Fault Flag supported, else coded 0		R	R	R
	5	Support for Tx LOS	Coded 1 if Tx Loss of Signal Flag supported, else coded 0		R	R	R
	4	Support for Rx LOS	Coded 1 if Rx Loss of Signal Flag supported, else coded 0		R	R	R
	3	Support for Tx Squelch	Coded 1 if Tx Squelch supported, else 0		R	R	R
	2	Support for Rx Squelch	Coded 1 if Rx Squelch supported, else 0		R	R	R
	1	Support for Tx CDR LOS	Coded 1 if Tx CDR Loss of Sync Flag supported, else coded 0		R	R	R
	0	Support for Rx CDR LOS	Coded 1 if Rx CDR Loss of Sync Flag supported, else coded 0		R	R	R
140	7	Support for Tx Bias Monitor	Coded 1 if Tx Bias Monitor supported, else coded 0	RO	R	R	R
8Ch	6	Support for Tx LOP Monitor	Coded 1 if Tx Light Output Power Monitor supported, else coded 0		R	R	R
	5	Support for Rx Input Power Monitor	Coded 1 if individual Rx Input Power Monitors supported, coded 0 for single-channel or group monitor		R	R	R
	4	Support for Rx Input Power Format	Coded 1 if Rx Input Power reported as Pave, coded 0 for reported as OMA		R	R	R
	3	Support for Case Temp Moni- tor	Coded 1 if Case Temperature Monitor supported, else coded 0		R	R	R
	2	Support for Internal Temp Monitor	Coded 1 if Internal Temperature Monitor supported, else coded 0		R	R	R
-	1	Support for Peak Temp Moni- tor	Coded 1 if Peak Temperature Monitor supported, else coded 0		R	R	R
	0	Support for Elapsed Time Monitor	Coded 1 if Elapsed PowerOn Operating Time Monitor supported, else coded 0		R	R	R

Byte	Bit	Bit Name	Description	Type	Required/Option - (Not Applicab		
Dyte	ы		Description	туре	Passive	Active copper	Active Optical
141	7	BER Monitor	Coded 1 for BER Monitor, else coded 0	RO	R	R	R
8Dh	6	Vcc3.3-Tx Monitor	Coded 1 for Internal Vcc3.3-Tx Monitor, else coded 0		R	R	R
	5	Vcc3.3-Rx Monitor	Coded 1 for Internal Vcc3.3-Rx Monitor, else coded 0		R	R	R
	4	Vcc12-Tx Monitor	Coded 1 for Internal Vcc12-Tx Monitor, else coded 0		R	R	R
	3	Vcc12-Rx Monitor	Coded 1 for Internal Vcc12-Rx Monitor, else coded 0		R	R	R
	2	TEC Current Monitor	Coded 1 for TEC current Monitor, else coded 0		R	R	R
	1-0	Reserved					
142 8Eh	7-6	Tx Channel Disable Capabilities	 00: Not provided, or unspecified 01: Global Tx Channel Disable Control implemented 10: Individual & independent Tx Channel Disable Control implemented 	RO	R	R	R
	5-4	Tx Channel Output Disable Capabilities	 11: Reserved 00: Not provided, or unspecified 01: Tx Global Channel Output Disable Control implemented 10: Individual & independent Tx Channel Output Disable Control implemented 11: Reserved 		R	R	R
	3-2	Tx Squelch Disable Capabilities	 00: Not provided, or unspecified 01: Global Tx Squelch Disable Control implemented 10: Individual and independent Tx Channel Disable Control implemented 11: Reserved 		R	R	R
	1	Tx Polarity Flip Mode	Coded 1 for Tx Channel Polarity Flip Control pro- vided, else coded 0		R	R	R
	0	Tx Margin Mode	Coded 1 for Tx Margin Mode provided, else coded 0	1	R	R	R
143	7-4	Reserved		RO			
8Fh	3-2	Tx Input Equalization Control	00: Not provided, or unspecified 01: Global Tx Input Equalization Control imple- mented 10: Individual and independent Tx Input Equal- ization Control implemented 11: Reserved		R	R	R
	1-0	Tx Rate Select Control	 00: Not provided, or unspecified 01: Global Tx Rate/Application Select Control implemented 10: Reserved (Individual and independent Tx Rate/Application Select control not available except in vendor-specific manner). 11: Reserved 		R	R	R

Table 25 Tx & Rx Upper Page 00h Memory Map

Bvte	Bit	Name	Description	Type	Requi - (Not	red/Op Applic	tiona cable)
-				51	Passive	Active copper	Active Optica
144 90h	7-6	Rx Channel Disable Capabilities	00: Not provided, or unspecified 01: Global Rx Channel Disable Control imple- mented	RO	R	R	R
			10: Individual & independent Rx Channel Dis- able Control implemented				
	5-4	Rx Channel Output Disable		-	R	R	R
	0 1	Capabilities	01: Rx Global Channel Output Disable Control implemented				
			10: Individual & independent Rx Channel Output Disable Control implemented				
	3-2	Rx Squelch Disable		-	R	R	R
	0-2	Capabilities	01: Global Rx Squelch Disable Control imple- mented			K	
			10: Individual and independent Rx Channel Dis- able Control implemented				
			11: Reserved	-			
	1	Rx Polarity Flip Mode	Coded 1 for Rx Channel Polarity Flip Control pro- vided, else coded 0		R	R	R
	0	Rx Margin mode	Coded 1 for Rx Margin Mode provided, else coded 0		R	R	R
145 01b	7-6	Reserved		RO			
311	5-4	Rx Output Equalization Control	00: Not provided, or unspecified 01: Global Rx Output Equalization Control imple- mented		R	R	R
			10: Individual and independent Rx Output Equal- ization Control implemented				
	0.0		11: Reserved				
	3-2	Control	01: Global Rx Output De-Emphasis Control imple- mented		ĸ	ĸ	R
			10: Individual and independent Rx Output De- Emphasis Control implemented				
			11: Reserved				
	1-0	Rx Rate Select Control	00: Not provided, or unspecified 01: Global Rx Rate/Application Select Control		R	R	R
			10: Reserved (Individual and independent Rx Rate/Application Select control not available except				
			in vendor-specific manner). 11: Reserved				

Table 25 Tx & Rx Upper Page 00h Memory Map

InfiniBandSM Trade Association

Bvte	Bit	Name	Description	Type	Requi - (Not	red/Op Applie	tional/ cable)	2
_,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Passive	Active copper	Active Optical	3
146	7	FEC Control	Coded 1 for FEC Control, else coded 0	RO	R	R	R	
92h	6	PEC Control	Coded 1 for PEC Control, else coded 0		R	R	R	4
	5	JTAG Control	Coded 1 for JTAG Control, else coded 0		R	R	R	_
	4	AC-JTag Control	Coded 1 for AC-JTAG Control, else coded 0		R	R	R	5
	3	BIST	Coded 1 for BIST, else coded 0		R	R	R	G
	2	TEC Temperature Control	Coded 1 for TEC Temperature Control, else coded 0		R	R	R	0
	1	Speed Mode Set Control	Coded 1 for Sleep Mode Set Control provided, else coded 0		R	R	R	7
	0	CDR Bypass Control	Coded 1 for CDR Bypass Control provided, else coded 0		R	R	R	8
147 93h	7-4	Device Technology	0000: 850 nm VCSEL0001:1310 nm VCSEL0010:1550 nm VCSEL0011: 1310 nm FP0100:1310 nm DFB0101:1550 nm DFB0110: 1310 nm EML0111: 1550 nm EML1000: Copper or others11001: 1490 nm DFB1010: Copper cable un-equalized1011: Copper cable passive equalized1100: Copper cable near & far end active equalizer110: Copper cable, far end active equalizer111: Copper cable, near end active equalizer111: Reserved	RO	R	R	R	9 10 1 ⁻ 1: 1:
	3	Wavelength Control	0: No control 1: Active wavelength control		-	-	R	
	2	Transmitter cooling	0: Uncooled transmitter, 1: Cooled transmitter		-	-	R	14
	1	Optical Detector	0: P-I-N Detector 1: APD detector		-	-	R	
	0	Optical Tunability	0: Transmitter not tunable, 1:Transmitter tunable		-	-	R	1:
148 94h	All	Max Power Utilization	Maximum power utilization, in units of 0.1 Watts. Range: 0.1W - 25.5 Watts 00h: No information	RO	R	R	R	1(
149	7-1	Reserved	Coded 1 for 12x to 3-4x Cable, else, for regular cable	RO	R	R	R	17
95h	0	12x to 3-4x	without fanout, coded 0					
150-151 96h-97h	All	Reserved		RO				18

Table 25 Tx & Rx Upper Page 00h Memory Map

21

22

23

Table 25 Tx & Rx Upper Page 00h Memory Map

Byte	Bit	Name	Description	Type	Required/Optional - (Not Applicable)						
2910				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Passive	Active copper	Active Optical				
152-167 98h-A7h	All	Vendor Name	Vendor name in ASCII - 16B	RO	R	R	R				
168-170 A8-AAh	All	Vendor OUI	Vendor OUI (IEEE ID): Organization-Unique Identifier - 3B	RO	R	R	R				
171-186 AB-BAh	All	Vendor Part Number	Vendor Part Number in ASCII - 16B	RO	R	R	R				
187-188 BBh- BCh	All	Vendor Rev. Number	Vendor Revision Number in ASCII - 2B	RO	0	0	0				
189-204 BDh- CCh	All	Vendor Serial Number	Vendor Serial Number (ASCII): Varies by unit - 16B	RO	0	0	0				
205-212 CD-D4h	All	Vendor Date Code	Vendor Date Code YYYYMMDD (ASCII): Spaces (20h) for unused characters	RO	0	0	0				
213-222 215-DEh	All	Lot Code	Customer-Specific Code or Vendor-Specific lot code (ASCII). 10B. All spaces (20h) if unused	RO	0	0	0				
223 DFh		Checksum	Checksum of addresses 128 through 222 inclusive: 8 low- order bits of sum	RO	R	R	R				
224-255 E0-EFh		Vendor Specific - 32B	Vendor Specific Read-Only Registers	RO	0	0	0				

15

17

18

19

20

21

22

23

Management Interface

7.6.4 TX UPPER PAGE 01H

Table 26 on page 91 shows the memory map for the Tx upper page 01h

Table 26 Tx Upper Page 01h Memory Map

Byte	Bit	Bit Name	Description	Type	Required/Optional			
	Dit			туре	Passive	Active copper	Active Optical	
128 80h	All	Hi Alarm Threshold for 1st Tx Temperature Monitor MSB	Hi Alarm Threshold for 1st Internal Temperature Monitor for Tx MSB: Integer part coded in signed 2's complement. Tolerance is \pm 3°C.	RO	0	R	R	
129 81h	All	Hi Alarm Threshold for 1st Tx Temperature Monitor LSB	Hi Alarm Threshold for 1st Internal Temperature Monitor for Tx LSB: Fractional part in units of 1°/256 coded in binary.					
130-131 82h-83h	All	Lo Alarm Threshold 1st Tx MonitorTemp	Lo Alarm Threshold for 1st Internal Temperature Monitor for Tx. Same 2 Byte format as 128-129	RO	0	R	R	
132-133 84h-85h	All	Hi Alarm Threshold 2nd Tx MonitorTemp	Hi Alarm Threshold for 2nd Internal Temperature Monitor for Tx. Same 2 Byte format	RO	0	0	0	
134-135 86h-87h	All	Lo Alarm Threshold 2nd Tx MonitorTemp	Lo Alarm Threshold for 2nd Internal Temperature Moni- tor for Tx. Same 2 Byte format	RO	0	0	0	
136-143 88h-8Fh	All	Reserved - 8B	Reserved - Alarm Thresholds for Module Monitors					
144-145 90h-91h	All	Hi Alarm Threshold Tx Vcc3.3 Monitor	Hi Alarm Threshold for Internal Vcc3.3 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	
146-147 92h-93h	All	Lo Alarm Threshold Tx Vcc3.3 Monitor	Lo Alarm Threshold for Internal Vcc3.3 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	
148-149 94h-95h	All	Hi Alarm Threshold Tx Vcc12-Monitor	Hi Alarm Threshold for Internal Vcc12 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	
150-151 96h-97h	All	Lo Alarm Threshold Tx Vcc12 Monitor	Lo Alarm Threshold for Internal Vcc12 Monitor for Tx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	
152-167 98h-A7h	All	Reserved - 16B	Reserved - Alarm Thresholds for Module Monitors	RO				
168-169 A8h-A9h	All	Hi Alarm Threshold, Tx Bias Current	High Alarm Threshold on Tx Bias current: in 2 μ A units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	R	
170-171 AAh- ABh	All	Lo Alarm Threshold, Tx Bias Current	Low Alarm Threshold on Tx Bias current in 2 μ A units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	R	
172-173 ACh- ADh	All	Hi Alarm Threshold, Tx Optical Power	High Alarm Threshold on Transmitted Optical Power in 0.1 μ W units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	R	

24

1

1

12

14

15

16

17

18

19

20

21

22

23

Byte	Bit	Bit Name	Description	Type	Required/Optional			2
_,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Passive	Active copper	Active Optical	3
174-175 AEh- AFh	All	Lo Alarm Threshold, Tx Optical Power	Low Alarm Threshold on Transmitter Optical Power in 0.1 μ W units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	R	4
176-179 B0h-B3h	All	Reserved - 4B	Reserved - Alarm Thresholds for Channel Monitors					5
180-181 B4h-B5h	All	Checksum	Checksum: Low order 16 bits of the sum of all pairs of bytes from 128 through 175 inclusive, as unsigned integers.	RO	R	R	R	6
182-205 B5h- CDh	All	Bias Current Monitor Tx11 Bias Current Monitor Tx00	Per-channel Tx Bias current: Monitor. 2B per chan- nel, each measured in 2 μ A units coded as 16 bit unsigned integer, Low byte within each byte pair is MSB. Tolerance is ± 0.50 mA.	RO	-	-	0	8
206-229 CEh- E5h	All	Output Optical Power Monitor Tx11 Output Optical Power Monitor Tx00	Per-channel Tx Light Output Monitor in 0.1μ W units coded as 16 bit unsigned integer, Low byte within each pair is MSB. Tolerance is +/- 3 dB	RO	-	-	0	9 1
230-255 E6h-FFh	All	Vendor Specific - 26B	Vendor Specific Tx Functions					1

Table 26 Tx Upper Page 01h Memory Map

7.6.5 RX UPPER PAGE 01H

Table 27 on page 92 shows the memory map for the Rx upper page 01h 13

Table 27 Rx Upper Page 01h Memory Map

Required/Optional/ - (Not Applicable) Bit Byte Name Description Туре Active Active Passive copper Optical 128 All Hi Alarm Threshold for 1st Rx Hi Alarm Threshold for 1st Internal Temperature Monitor RO 0 0 0 **Temperature Monitor MSB** for Rx MSB: Integer part coded in signed 2's complement. 80h Tolerance is ± 3°C. Hi Alarm Threshold for 1st Internal Temperature Monitor 129 All Hi Alarm Threshold for 1st Rx 81h **Temperature Monitor LSB** for Rx LSB: Fractional part in units of 1°/256 coded in binary. Lo Alarm Threshold Lo Alarm Threshold for 1st Internal Temperature Monitor 0 0 130-131 All RO 0 82h-83h 1st Rx Temp Monitor for Rx. Same 2 Byte format as 128-129 132-133 Hi Alarm Threshold Hi Alarm Threshold for 2nd Internal Temperature Monitor RO 0 0 All 0 84h-85h 2nd Rx Temp Monitor for Rx. Same 2 Byte format Lo Alarm Threshold for 2nd Internal Temperature Moni-134-135 All Lo Alarm Threshold RO 0 0 0 tor for Rx. Same 2 Byte format 86h-87h 2nd Rx Temp Monitor Reserved - 8B Reserved - Alarm Thresholds for Module Monitors 136-143 All 88h-8Fh

Byte	Bit	Name	Description	Туре	Requi - (Not	red/Op Applie	tional/ cable)	2
,			•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Passive	Active copper	Active Optical	3
144-145 90h-91h	All	Hi Alarm Threshold Rx Vcc3.3 Monitor	Hi Alarm Threshold for Internal Vcc3.3 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	4
146-147 92h-93h	All	Lo Alarm Threshold Rx Vcc3.3 Monitor	Lo Alarm Threshold for Internal Vcc3.3 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	5
148-149 94h-95h	All	Hi Alarm Threshold Rx Vcc12-Monitor	Hi Alarm Threshold for Internal Vcc12 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	7
150-151 96h-97h	All	Lo Alarm Threshold Rx Vcc12 Monitor	Lo Alarm Threshold for Internal Vcc12 Monitor for Rx: Voltage in 100 μ V units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	0	0	8
152-167 98h-A7h	All	Reserved - 16B	Reserved - Alarm Thresholds for Module Monitors	RO				9
168-175 A8h-AFh	All	Reserved - 8B	Reserved Alarm Thresholds for Channel Monitors	RO				1
176-177 B0h-B1h	All	Hi Alarm Threshold, Rx Optical Power	High Alarm Threshold on Received Optical Power in 0.1 μ W units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	R	1
178-179 B2h-B3h	All	Lo Alarm Threshold, Rx Optical Power	Low Alarm Threshold on Received Optical Power in 0.1 μ W units coded as 16 bit unsigned integer, Low byte is MSB.	RO	-	-	r	1
180-181 B4h-B5h	All	Checksum	Checksum: Low order 16 bits of the sum of all pairs of bytes from 128 through 175 inclusive, as unsigned integers.	RO	R	R	R	1
182-205 B5h- CDh	All	Reserved - 24B	Reserved Rx Channel Monitors	RO				1
206-229 CEh- E5h	All	Input Optical Power Monitor Tx11 Input Optical Power Monitor Tx00	Per-channel Rx Light Input Monitor in 0.1μ W units coded as 16 bit unsigned integer, Low byte within each pair is MSB. Tolerance is +/- 3 dB	RO	-	-	0	1
230-255 E6h-FFh	All	Vendor Specific - 26B	Vendor Specific Rx Functions					1

Table 27 Rx Upper Page 01h Memory Map

20

21

22

23

	1
	2
	3
	4
End of Document	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24